Welcome to the interactive web schedule for the 2019 Midwest Fish & Wildlife Conference! Please note, this event has passed. To return to the main Conference website, go to: www.midwestfw.org.
For tips on navigating this schedule, click HELPFUL INFO below.
CONFERENCE SCHEDULE UPDATES & CHANGES: As a result of the prolonged government shutdown, we experienced a number of cancellations and changes to the schedule. Cancellations and changes are listed here (as of January 26, 2019).
AUTHORS: Jacob E. Bowman, Jill B.K. Leonard – Northern Michigan University.
ABSTRACT: Brook trout (Salvelinus fontinalis) express variability in movement strategies, including partial migration. Partial migration has gained attention because individuals that migrate can express polymorphism, growing larger than their stream counterparts. Partial migration and life history-related movement strategies may be related to individual variability in metabolic parameters; however, this has not been well documented in the field. We performed field metabolic rate determination on native brook trout in the Rock River in Alger County Michigan during spring and summer 2018, including both resting and active metrics. Brook trout were then tracked using PIT tags with stationary and backpack telemetry throughout the summer with a 46% recapture rate. Movement patterns were compared to metabolic rate rankings within fish. Each fish’s metabolic status was ranked relative to other individuals measured. The continuous field resting and field maximum measures were positively related (p<0.0001). The ranking sytem held this same correlation (p<0.0001). This relationship in metabolic parameters follows what is expected in individual variation of metabolism. Our work will allow us to understand at what level individual variation in metabolic phenotypes and associated movement phenotypes are related. This research will contribute to understanding the resiliency of valued life history strategies and morphotypes such as migration.
AUTHORS: Tyler Grabowski, University of Illinois; David Wahl, Illinois Natural History Survey; Joe Parkos, Illinois Natural History Survey; Dalon White, University of Illinois; Anthony Porreca, Illinois Natural History Survey
ABSTRACT: Global climate change is expected to exert selective pressures on behavioral phenotypes within freshwater ecosystems through environmental changes associated with chronic warming of water temperatures. We compared the behavioral profiles of bluegill sunfish (Lepomis macrochirus) from three power-plant cooling reservoirs to the behavioral tendencies of bluegill from three ambient reservoirs to investigate whether long-term exposure to increased water temperatures influences the expression of behavioral phenotypes. Power-plant cooling reservoirs were considered as model systems for global warming due to their year-round elevated water temperatures (~5°C) when compared to ambient reservoirs. We quantified activity, boldness, and exploration through 30-minute assays in a common laboratory setting that tested the spatial usage and response of individual fish to a suite of situations involving novel items and a predator, largemouth bass (Micropterus salmoides). For each assay, multiple measurements were recorded for each behavior, leading to the development of a principal component score (PCA) for activity, boldness, and exploration for each individual. PCA scores for each behavior were compared between groups (heated or ambient) and then used to determine how well behaviors correlated to one another within groups. Distinct behaviors did not differ between bluegill from heated and ambient lakes. However, we found significant directional changes between groups for the correlations of activity and exploration as well as for boldness and exploration. These results suggests that chronic exposure to warming can influence the expression of behaviors, providing insight for how the behavioral composition of bluegill populations may be modified in chronically warmed systems.
AUTHORS: Tiffany Atkinson, Suzanne M. Gray – The Ohio State University
ABSTRACT: One of the most deleterious stressors on aquatic systems is elevated turbidity (i.e. concentration of suspended particulates in a body of water) resulting from human activities. In turbid waters, fish struggle to perceive visual cues, especially those associated with foraging (e.g. finding prey items) and reproduction (e.g. colorful nuptial displays). Thus, we expect foraging behaviors to be altered with some prey being less detectable under turbid conditions. In addition, in many fishes, females prefer males with more saturated red and yellow (carotenoid-based) nuptial coloration, as indicators of high male fitness. However, fish are unable to synthesize carotenoid-based pigments, thus they rely solely on their diet for these red and yellow nuptial displays. We evaluated the influence of turbidity on the diet and male coloration of an African cichlid (Pseudocrenilabrus multicolor victoriae) across a gradient of degraded water quality. Wild-caught, male P. multicolor from low turbidity sites, within an agricultural zone, displayed significantly more carotenoid-based coloration than males from high turbidity sites, with standard length as a significant covariate. However, we found that prey availability (based on point-in-time macroinvertebrate sampling) was similar across turbidity levels. Diet analyses will allow us to determine if turbidity caused a behavioral shift in foraging and will reveal if carotenoid uptake varies across sites. Our results can inform future land-use decisions to maintain viable African fisheries and conservation of aquatic biodiversity.
AUTHORS: Seth M. Bogue; Cassi Moody-Carpenter; Anabela Maia; Robert E. Colombo – Biological Sciences Department, Eastern Illinois University
ABSTRACT: The Sangamon River flows approximately 396 kilometers through central Illinois and is impounded in the city of Decatur for municipal use. The Sanitary District of Decatur (SDD) processes residential, medical, and industrial waste before releasing effluent into the river downstream of the dam. Discharge from the dam is significantly reduced during periods of low precipitation. As a result, the downstream stretch of the river is dominated by wastewater effluent. A high density of fish exhibiting elongated fins reside in this stretch of the river. To assess the relationship between effluent and fin elongation, Fathead minnows were exposed to wastewater effluent in microcosms at SDD and at a second wastewater treatment plant located in Charleston, Illinois. In addition, two control groups were exposed to dechlorinated tap water. Standard length, individual fin lengths, and weight was recorded for a total of 32 fish from each treatment during an 8-week time span. SDD treatment fish had significantly longer fins and exhibited better condition and faster growth in comparison to all other treatments. Our results are indicative of a causal relationship between SDD wastewater effluent and the fin elongation observed in fish of the Sangamon River. We hypothesize that fin elongation is the result of chronic exposure to contaminants and heavy metals present in the effluent.
AUTHORS: Jessica Ward, Gina Lamka, Autum Auxier, Hannah Mullinax – Ball State University
ABSTRACT: Cyanobacteria are prevalent blue-green algae in freshwater systems with adverse impacts on both human health and the environment. At least 8 classes of toxins produced by cyanobacteria have been identified with the potential to affect organismal physiology and function. Of these, ß-N-methylamino-l-alanine (BMAA) and its isomer 2,4-diaminobutyric acid (DABA) are potent neurotoxic metabolites of interest because they are a risk factor for neurodegenerative diseases in humans. However, sensorimotor integration is also critical to the successful survival and reproduction of resident aquatic organisms, and these neurodegenerative cyanotoxins have the potential to modify the expression of simple and complex behaviors within individuals and the outcomes of interactions between individuals in aquatic environments. One way that this can happen is through changes that compromise an organism’s ability to correctly perceive, process and respond to relevant biotic stimuli (e.g., predators, prey, or mates). In this study, we examined the effects of DABA on the foraging behavior of a larval fish (Promelas pimephales). We exposed larvae to a range of environmentally-relevant concentrations of DABA for 21 days. We then tested larvae in prey-capture assays to assess the effect of neural disruption on the outcomes of predator-prey interactions, and recorded individual prey strikes using a high-speed camera to assess changes in cognitive and motor aspects of hunting behavior. Compared with nonexposed fish, exposure to DABA was associated with reduced foraging success and an altered ability to recognize prey. These data improve our understanding of how aquatic contaminants affect stimulus-response pathways though their effects on brain function, and suggest that even subtle contaminant-induced shifts in perception, processing, or response can have marked effects on fitness.
AUTHORS: Cynthia Nau, Dr. Patrick Forsythe – University of Wisconsin-Green Bay
ABSTRACT: Small, lower-order (1<sup>st</sup>-3<sup>rd</sup>) tributaries of the Great Lakes, including those of Green Bay and Lake Michigan, have been largely understudied relative to the open water and large rivers in the region. Nonetheless, recent research suggests that these aquatic ecosystems may play a vital role as reproductive, nursery and foraging habitat for the highly varied assemblage of fish species resident to the area. Diverse stream geomorphology and anthropogenic influences have resulted in a high degree of variation in stream condition across the watersheds of the region. This large environmental gradient allows for exploration of the ecology of resident fish species in relation to abiotic variability. The primary objective of this study is to quantify the diversity, distribution and habitat selection of resident fishes in intricate detail. This assessment has been carried out on seven Green Bay tributaries and two Lake Michigan tributaries of varying stream condition. Fish and habitat surveys were conducted over a one-kilometer reach, which was further divided into 20-meter sub-reaches using block nets. Preliminary results suggest that the fish community is a unique function of each tributary and that community composition changes as distance from the stream’s mouth increases. The detailed nature of this study will serve to inform restorative management actions, maximizing benefit to individual streams and fish species. Understudied non-game fishes may especially profit from this habitat association knowledge by allowing restoration projects to account for their species-specific requirements. Due to the vast amount of variation found in the Green Bay sub-watershed, these species to habitat relationships may be applicable to tributaries across the Great Lakes region.
AUTHORS: Sam Schneider, David Edds – Emporia State University
ABSTRACT: Lotic ecosystems are characterized by riffle–pool mesohabitats that support discrete fish assemblages. Most previous mesohabitat studies on fishes have focused on riffles and wadeable pools in small streams, and only recently have non-wadeable, deep pool mesohabitats been examined. Previous research suggests that deep pools are vital seasonal refugia for various fish species during times of adverse physicochemical conditions, yet the deep pool fish assemblage is often not sampled during all seasons, especially winter. We are comparing fish abundance and species richness at the mesohabitat scale in riffles, shallow lateral pools, and non-wadeable deep pools in the Neosho River, Kansas, and are examining relationships between fish abundance, species richness, water temperature, dissolved oxygen, and season, with emphasis on investigating possible seasonal use of deep-pool refugia. We are using a Siamese trawl to sample these three mesohabitat types monthly at nine sites. Summer results suggest that mesohabitats are discrete depending, however, on whether catch is analyzed by m<sup>2 </sup>or m<sup>3</sup>. Riffles contain more fish per m<sup>3</sup> and more fish species per m<sup>3</sup>, but shallow lateral pools contain more species per m<sup>2</sup>. This research will provide insight on seasonal mesohabitat use and the importance of seasonal deep pool refugia in warmwater rivers of the Midwest.
AUTHORS: Jeff Robbins, Dr. Mark Pyron – Ball State University
ABSTRACT: Streams are continuously changing systems, which makes them a challenging aquatic environment to quantify. River ecosystem models (River Continuum Concept, Flood Pulse Concept) define streams using longitudinal or lateral gradients, but neither is effective at defining stream geomorphology links to the biota. The Riverine Ecosystem Synthesis (RES) was developed to incorporate geomorphological structures of streams in coordination with their delineation. The RES divides rivers and streams into Functional Process Zones that are repeated throughout the river using physical characteristics and other variables. The RES defines FPZs using an ArcGIS model called RESonate. The model uses geology and elevation variables to determine floodplains, valley sizes, and river channels, which are then analyzed and processed into FPZs. This GIS model is relatively novel and therefore not many macro level watersheds have been processed through RESonate. The Wabash and Ohio Rivers have a combined stretch of over 2000 km of waterway through agricultural, urban, and forested land. At this time, no rivers in the Midwest United States have been analyzed using RESonate. The Wabash and Ohio Rivers contain high fish and wildlife biodiversity that have recreational and conservational value. The RESonate model will generate FPZs for the river that were previously unknown.Fish species inhabit environments best suited to their ecology that is dictated by substrate composition, large woody debris, and local hydraulics. I plan to use the RESonate model to identify FPZs at fish collection sites where we have longterm data. One goal is to test if fish species are using specific FPZs. This technique has not yet been tested for any fish assemblages. Determining FPZs of fish species in large Midwest Rivers can help with future management and conservation goals.
AUTHORS: Jessica M. Rohr, Eastern Illinois University; Scott J. Meiners, Eastern Illinois University; Trent Thomas, Illinois Department of Natural Resources; Robert E. Colombo, Eastern Illinois University
ABSTRACT: Disturbances among communities are common, but the response of fish assemblages to anthropogenic fish kills is rarely investigated. To determine how rapidly, or if recovery occurs without further mitigation, complete quantification of the fish recovery process is necessitated. We evaluated the recovery of six creeks located in central Illinois, including an undisturbed control system. Pre-kill data was available for all locations, and post-kill data was available within two to six months following the perturbation. Data analysis included pre- and post-kill comparisons of species richness, catch per unit effort (CPUE), and index of biotic integrity (IBI) and non-metric multidimensional scaling (NMS) to visually compare compositional shifts. We found that richness and IBI experienced dramatic shifts within the first year after the kill, while CPUE remained relatively consistent among sampling events. Interestingly, extinction was not limited to only rare species. There were also multiple colonizations of new species that were not present prior to the perturbation. NMS revealed that some creeks experienced little compositional shift similar to that of the control system while other creeks are still experiencing large shifts. Lastly, the rate of compositional change decreased significantly over time among all locations, especially within the first year. Richness and IBI have clearly recovered from the disturbance and continue to exceed the original pre-kill values; however, assemblages in some locations have shifted into a different community structure and are continuing to change. Our results make recovery among these systems difficult to assess calling into question the predictability of the system’s response. Further functional analysis of these systems, including fish length distribution, may help to alleviate some of these discrepancies.
AUTHORS: Drew Holloway, Muncie Sanitary District Bureau of Water Quality; Jason Doll, University of Mt. Olive; Robert Shields, Utah Division of Wildlife Resources
ABSTRACT: The importance of monitoring anthropogenic changes in a lotic system are not limited to chemical water quality monitoring. The addition of biological monitoring allows fish to be used as bioindicators because of their varying tolerance to pollution. For this study we utilized long-term water quality and fish data to evaluate temporal changes brought on by passage of the Clean Water Act (1972). Non-metric Multidimensional Scaling (NMS) was used to describe changes in the fish community and also heavy metal concentrations of the West Fork White River inMuncie, Indiana over the past 33 years. The NMS results for both heavy metals and fish separated into distinct decadal clusters. The shift in fish community data was characterized by a drop in pollution tolerant species and an increase in intolerant species. A decrease in heavy metal concentrations (chromium, zinc, and lead) was also found during this time period. All NMS fish axis had a positive slope indicating an increase in intolerant species as heavy metal concentrations decreased. Our findings indicate that the water quality improvements documented in the West Fork White River have directly impacted its local fish community.
AUTHORS: Seth J. Fopma, South Dakota State University; Brian D.S. Graeb, South Dakota State University; Tammy Wilson, National Park Service
ABSTRACT: Described as an “island on the prairie” the Black Hills are a small range of mountains arising from a sea of short and mid-grass prairies. Upwelling from the center of the hills, flowing outward are numerous, cold-water streams lacking connectivity to regional cold-water networks. Many species that inhabit local streams are subsequently isolated from conspecific populations, posing unique management challenges. Climate change, predicted to alter local climatic patterns (intensified wet and dry cycles, general warming), potentially further limits species distributions within the island. Mountain Sucker (Catostomus platyrhynchus) is listed as a management indicator species for the Black Hills of South Dakota by South Dakota’s department of Game Fish and Parks, and is used as a proxy for regional ecosystem health. Surveys conducted between 2008 and 2010 revealed that populations had been in decline in both distribution and local abundance. Population surveys conducted between 2014 and 2017 were used to generate species distribution models (SDMs) for this regionally imperiled species. Model predictions are expected to be driven by stream permanency and connectivity. Predictions were compared to 2018 empirical observations to assess model accuracy. Accurate models allow managers to more efficiently identify local populations, impacts of climate change and target conservation efforts.
AUTHORS: Nicholas Preville, Grand Valley State University
ABSTRACT: The resiliency of our aquatic ecosystems hinges on our ability to protect the native species that reside there. The River Redhorse (Moxostoma carinatum) is one such example and populations have become low enough to warrant listing by the State of Michigan. Causes of decline include overfishing, habitat alteration, and lack of knowledge of basic life-history attributes including the use of non-spawning habitat. In order to aid its recovery, we implanted 15 individuals with radio transmitters and tracked their locations over the course of a summer. Tagged River Redhorse were found to move as far as 50 km down river following spawning and establish themselves in small home ranges. Substrates in these home ranges were dominated by gravel which represented 59 percent of samples. Little preference for depth or velocity was shown among the tracked fish. However, general habitat use was dominated by runs and riffles which represented 58 and 27 percent of tracked locations respectively. Presence of mussels and snails, the River Redhorse’s preferred food source, appeared to be the best predictor for the River Redhorse’s use of an area as they were found at 79 percent of all tracked locations. The recovery of the River Redhorse will likely depend on our ability to protect these newly discovered feeding areas as well as any known spawning sites. Future management should therefore focus on the protection of native mussels and snails and should attempt to maintain connectivity between spawning and summer habitats.
AUTHORS: Alan J. Mock, Carl R. Ruetz III – Annis Water Resources Institute, Grand Valley State University; Dan Mays, Archie Martell – Little River Band of Ottawa Indians
ABSTRACT: The Arctic grayling (Thymallus arcticus) was extirpated from Michigan by 1936, and subsequent efforts to reintroduce the species to Michigan have failed. However, efforts to restore the species in Montana have been successful through the use of remote site incubators (RSIs), which allow Arctic grayling to be reared and stocked at the site of introduction. Due to a renewed interest in reestablishing Arctic grayling in Michigan, we conducted a study using rainbow trout (Oncorhynchus mykiss) eggs as surrogates for Arctic grayling to evaluate RSIs in three tributaries of the Manistee River to support the reintroduction effort. We installed eight single-tank RSIs (single 19-L bucket) and one stock-tank RSI (265-L trough) at each study stream. Our objectives were to: 1) test whether the removal of dead eggs and alevins from single-tank RSIs affected hatching success, and 2) compare hatching success between two different RSI designs (i.e., single-tank and stock-tank RSIs). Survival—our measure of hatching success that accounted for swim-out and alevins that remained in RSIs—ranged from 40.3% to 42.4% (mean=41.4%) across the three study streams. Mean survival in picked RSIs (45.6%) was not significantly different from unpicked RSIs (44.4%; p>0.1). Mean survival in stock-tank RSIs was 37.2%. Survival between stock-tank and single-tank RSIs by stream differed from 1.8% to 10.3% (mean=5.3%). Our preliminary results suggests that differences in hatching success may not be biologically relevant between the two RSI designs we tested, and that removing dead individuals from RSIs during incubation did not significantly increase hatching success.
AUTHORS: Brian J. Zimmerman, S. Mažeika P. Sullivan – The Ohio State University
ABSTRACT: Aquatic ecosystems of Ohio historically supported diverse and abundant stream and river fish communities. Loss and fragmentation of high-quality aquatic habitat and impairments in water quality have led to significant alterations in the diversity, composition, and productivity of native fish communities. The Bluebreast Darter (Etheostoma camurum), for example, was extirpated from many Ohio river systems over a century ago. In June of 2016 and 2017, 974 and 924 adult Bluebreast Darters, respectively, were translocated from the greater Muskingum River basin into the upper Licking River. Translocated individuals were marked with visible implant elastomer (VIE) tags. Translocated individuals from both events continue to be recaptured in follow-up surveys, most recently in late August 2018. VIE tags revealed minimal movement between release sites, however a few individuals have traveled as far as nine river kilometers following translocation. Natural reproduction by translocated fish has been documented by the capture of untagged individuals beginning in the first follow up surveys in 2016 and continues to be observed in subsequent years.
AUTHORS: Paige Wigren, Justin Chiotti, and James Boase – United States Fish and Wildlife Service, Alpena Fish and Wildlife Conservation Office – Detroit River Substation; Joseph Leonardi, Michigan Department of Natural Resources, Bay City Field Office; Tracy Galarowicz, Central Michigan University, Department of Biology
ABSTRACT: The installment of rock ramps to replace failing dams is a fairly new technique in the Midwest and little research has been done to assess the success of fish passage. In 2004, the structural condition of the Frankenmuth Dam was assessed and deemed to be in fair condition, but no longer functional, prompting officials to pursue dam removal. In order to maintain historic water levels in the impounded area above the dam, a thirteen-tier rock ramp was constructed in the fall of 2015 aimed at improving the connectivity and ecology of the Cass River watershed, a tributary to Saginaw Bay, MI. Prior to dam removal, electrofishing surveys were conducted in the spring and summer between 2010 – 2012 to record fish species composition above and below the existing dam. Post removal electrofishing surveys were conducted in the spring and summer between 2016 – 2018 with the goal of tagging fish downstream of the rock ramp and documenting changes in fish community composition. A total of 2,605 fish were tagged and 30 of these fish were recaptured upstream of the rock ramp. Since the construction of the rock ramp, 12 fish species not previously detected upstream have been captured, including freshwater drum, walleye, gizzard shad, flathead catfish, and round goby. Results indicate the rock ramp allows fish to access habitat upstream of the former dam, however passage is likely dependent upon river discharge during migration periods.
AUTHORS: Cory Becher, The Ohio State University, Aquatic Ecology Laboratory, EEOB; Stephen M. Tyszko, Ohio Department of Natural Resources-Division of Wildlife; Dr. John Olesik, The Ohio State University, Trace Elements Research Laboratory; Dr. Stuart A Ludsin, The Ohio State University, Aquatic Ecology Laboratory, EEOB
ABSTRACT: Stocking is a key management tool used to establish or enhance fisheries in reservoir ecosystems. Quantifying the contribution that stocked individuals make to the fishable population should be an essential component of any stocking program. However, such post-stocking assessment is oftentimes neglected, likely owing to difficulties associated with using conventional (i.e., artificial) tags to discern stocked individuals from wild-produced ones. To help the Ohio Division of Wildlife (DOW) better assess its Channel Catfish (Ictalurus punctatus) reservoir stocking program, we have been evaluating the use of otolith microchemistry—quantified using laser-ablation plasma-mass spectrometry—as a natural tag to discriminate between stocked and wild-produced individuals. Herein, we first present results from predictive quadratic discriminate function (QDF) models that were developed for three reservoirs, which we used to differentiate wild-produced individuals from hatchery-reared individuals. These models were built using known signatures from the hatchery and reservoirs. We used core and edge chemistry of hatchery-reared broodstock and juveniles, as well as the recent edge chemistry of individuals captured in the three reservoirs. Afterwards, we present findings from our predictive analyses, which used the QDF models to classify reservoir individuals unknown core signatures as either stocked (hatchery origin) or wild-produced. Our preliminary findings indicate that otolith microchemistry can be used as a tool to identify the natal origin of wild-caught fish in our study reservoirs, with stocked fish comprising less than half of the population at large in each reservoir. We ultimately discuss the value of this approach for helping management agencies such as the Ohio DOW assess the effectiveness of their channel catfish stocking programs.
AUTHORS: Ernesto Flores, Kansas Department of Wildlife, Parks, and Tourism; William J. Stark, Fort Hays State University
ABSTRACT: Age information is a management tool used by fisheries biologists to characterize populations. The Blue Catfish (Ictaluris furcatus) is a riverine species that grow to trophy lengths and have been introduced into Kansas Reservoirs. Blue Catfish were introduced into Wilson Reservoir in 2006 and Lovewell Reservoir in 2010 with a common management objective, establishing a trophy fishery. Standard sampling protocol (SSP) has misrepresented the Blue Catfish population status in both reservoirs; a targeted sampling effort was conducted in the summer of 2016 in Lovewell Reservoir using low-pulse electrofishing and in 2017 using float-lines to gain insight on the population structure. A total 170 fish were collected from Wilson Reservoir with a TL ranging 210-860 mm. We sampled Lovewell Reservoir and collected 146 individuals ranging from 220-860 mm. Pectoral spines were collected from each individual and used for aging. Annual stockings were scheduled for Lovewell reservoir from 2010-2014 approximately at 1 fish/acre excluding the year 2013 stocking at 0.33 fish/acre. Age 6 fish comprised 52% of the sample, 2% at age 5, 13% age 4, 3% age 3, 23% age 2, and 4% age 1. Wilson Blue Catfish stocking rates were conducted at 2 fish/acre in 2006 and 2008; stocking rates were 1 fish/acre in 2007, 2010, 2011, 2012, 2013, 2014, and 2016. Age 11 fish made up 13% of the sample, age 10 at 49%, 36% were age 9, and 7% age 1. Age classes 2, 3, 4, 5, 6, and 7 were not represented in the sample. Detection of these missing year classes may have been caused by low lake levels during this time period.
AUTHORS: Michael Mounce, Division of Fisheries, Illinois Department of Natural Resources
ABSTRACT: Anglers want quality fishing opportunities and a growing body of literature indicates that active bluegill management can maintain or increase angling quality in bluegill fisheries. Panfish anglers are a very important part of the angling community, but often ignored in developing quality fisheries due to stereotyped as being primarily harvest-oriented. In 1999, as part of a state-wide bluegill management study, a 203 mm minimum length limit and 10 bluegill/day harvest limit were applied to Walnut Point Lake (21 ha). Initial results looked promising, but bluegill soon stockpiled below the minimum length limit, which is typical in fish populations with good recruitment and average growth. In 2007, a maximum length limit was applied allowing the harvest of 15 bluegill/day, of which, only 5 could be > 203 mm. Age structure and the number of large bluegill collected improved. In 2013, concerns regarding body condition and potentially growth prompted liberalization of the limit to 20 bluegill/day (still allowing 5 fish > 203 mm). Body condition and the number of large bluegill collected improved. Under the maximum length limit the average proportion of large bluegill (> 203 mm) collected in surveys is significantly higher (P< 0.02) than in pre-regulation years (< 1999). The application and tailoring of this regulation, coupled with angler education, has demonstrated biological and sociological benefits in this bluegill fishery for eleven consecutive years. Resource-appropriate regulations, similarly tailored, could provide long-term angling quality benefits in other bluegill and panfish fisheries while maintaining harvest opportunities.
AUTHORS: Ben C. Neely, Jeff D. Koch, Connor J. Chance-Ossowski – Kansas Department of Wildlife, Parks, and Tourism
ABSTRACT: Bluegill Lepomis macrochirus contribute to unique fisheries in Kansas where they fill many niches. One niche that has been gaining recent attention from anglers is pursuit of large individuals. These efforts typically occur during the Bluegill spawn in May and June when anglers can visually target nest-guarding fish. A combination of being visually evident and aggressively defending nests makes Bluegill especially susceptible to angler harvest during this time. There is concern that harvest of nest-tending Bluegill may remove the fastest growing individuals from the population and ultimately results in populations that do not support quality Bluegill fisheries. To this end, Bluegill were sampled from 14 Kansas impoundments with both fall electrofishing at random shoreline locations and spring angling for nest-tending individuals in 2017 and 2018. Total length was recorded from all captured individuals and otoliths were collected from up to five individuals per centimeter group for age and growth estimation. In all impoundments, length distribution of sampled bluegill differed between gears with angled fish shifted toward larger individuals. Similarly, angled fish exhibited more rapid growth than randomly sampled individuals in some populations. These results highlight the vulnerability of the fastest growing individuals in bluegill populations to angler harvest while preparing and guarding spawning sites. Further, these results suggest that instituting some level of protection to nest-guarding Bluegill might result in increased size structure and promote development and maintenance of quality Bluegill fisheries.
AUTHORS: Erin Haws, Iowa Department of Natural Resources
ABSTRACT: Freshwater ecosystems provide a diverse and extensive supply of resources to fauna and flora living within, to surrounding ecosystems, and human economies. As bodies of water evolve, so do the methods used to protect and restore them. Over the past decade, emphasis on sustaining freshwater ecosystems has led to a large expansion in the development of protective policies and restoration programs aiming to improve aquatic habitat. A recurring challenge to fish habitat restoration lies in defining impairment factors, their scale and the rate at which they are occurring in a system. Comprehensive assessments are therefore needed to identify impairments, prioritize waterbodies in need of restoration, and provide improved methods to measure local fish habitat using feasible metrics. This study provides an expansive look into lake and reservoir fish habitat in Iowa based on a survey reporting on all significant publicly owned lakes recognized by the Iowa Department of Natural Resources (DNR). The survey asked Iowa DNR Fisheries Biologists to report the degree of impairment of a set of variables for each individual waterbody in their management area. Multivariate factors were classified using the methods of Krogman and Miranda (2016), characterizing twelve broad constructs of fish habitat impairment. Study objectives include describing fish habitat impairment trends and identifying differences across lake type, watershed location, and status in the Lake Restoration Program. Future research plans aim to quantify relationships between fish habitat impairment constructs and measured water quality, physical, and biological parameters within existing datasets to evaluate the resources available to adequately measure fish habitat.
ABSTRACT: There is a lot of interest and effort spent on stream and wetland restoration across the nation. Restoring these aquatic systems is widely recognized as a positive countermeasure to past landuse impacts and degradation; however, research has found that restoration failures are pervasive. It is therefore critical for practitioners, land managers, grantors, and decision-makers to be able to recognize the common challenges associated with stream and wetland restoration and what a successful project looks like. This talk will take a categorical stroll through the restoration landscape providing insight into ,what to look for in determining the goals of a restoration project, assessing a site’s restoration potential, evaluating its design, and measuring its success.
AUTHORS: Bill Schumacher, Ohio Environmental Protection Agency
ABSTRACT: Frequently, stream and wetland restoration projects pay little attention to on-site historical disturbances to soils. However, an accumulating amount of research points to substrate disturbance as one of the primary causes of site failure. Investigations of several restoration projects have indicated that in many cases, when there is a failure in site hydrology and/or plant community development, a specific underlying soil disturbance, such as changes in physical soil properties or excessive nutrient buildup, can be identified. Diagnosing these potential disturbances prior to selection or construction is essential to ensuring that site development is not hampered by these underlying issues.This talk will focus on research conducted by the Ohio EPA Wetland Ecology Group on soils, in both reference and disturbed wetland and riparian habitats. Several studies have been conducted since 2011 that focus of soils as they relate to the overall ecological condition of a site. These include: 1) An intensification of the USEPA National Wetland Condition Assessment, in which a random set of 50 wetlands was assessed to compare soil factors with the overall ecological condition of the plant community; 2) A survey of reference condition riparian habitats to correlate high quality riverine flora with soil health; and 3) A paired soils study, in which identical mapped soils were analyzed in undisturbed forest habitats and adjacent heavily disturbed row cropping to illustrate variation in soil parameters between divergent levels of disturbance.Results of these studies will be discussed to illustrate how consideration of soil information may be used to assist in in the development of restoration projects.
ABSTRACT: Plants are outstanding indicators of environmental quality. Extremely small variations in physical site parameters, such as water depth and duration, soil health, and temperature can lead to significant differences in the plant community structure. Many plant species have very narrow ranges of tolerances to these factors which result in extreme habitat affinities. Others are generalists that can thrive under a wide range of habitat types and disturbances. Unfortunately, a majority of the more undesirable, non-native, “invasive” species, are highly adapted to sites that are heavily disturbed by human activities. In most cases, restoration projects involve sites that have been subjected historically to significant levels of anthropogenic disturbance. These projects are also exposed to a high level of mechanical disturbance during construction. Additionally, many riparian restoration projects have limited performance goals that only target the planting of tree species, disregarding the other critical strata (e.g. shrubs and herbs) generally present within native plant communities. This practice severely reduces the long-term habitat potential for these sites. Because of these limitations, establishing a robust, diverse, and sustainable native plant community on restoration projects can be challenging.Several research studies have been conducted by the author that focus on the ecological condition of the plant communities associated with riparian and wetland restoration projects. Results of these studies will be discussed to focus on key factors that can be implemented to ensure a functional, native plant community is successfully established.
ABSTRACT: The wetlands that support amphibian breeding and habitat functions are being lost at a much higher rate than wetlands of other types. This is true for both urban and rural landscapes. These damages do not always directly impact the wetlands themselves but instead involve solely large-scale degradation of the habitats surrounding the wetlands. However, both direct and indirect impacts are debilitating to the wetlands’ amphibian communities. Additionally, far too often the lost amphibian community functions of wetlands are not being replaced through compensatory wetland mitigation or other wetland restoration and enhancement projects. Restoring wetland amphibian functions requires many considerations. By far, the most important factor is the location of the replacement wetland and ensuring there is the ability for it to interact with nearby surrounding habitat features that are supportive of wetland amphibian communities. Sites should be targeted toward areas where adjoining intact, high quality vernal pools are present and there is the ability to restore wetlands on surrounding hydric soils. Additionally, it is important to incorporate the attributes displayed by the area’s best remaining vernal pools in the restoration wetlands. These habitat components include seasonal hydroperiods, shallow slopes to the pools, supportive microtopographic features, and establishing connection to natural vernal pools, and their forested surrounding habitats, through reforestation. In the end, high quality complexes of forested landscapes that contain fully functional vernal pools, with exceptional amphibian communities, will result when the above considerations are the basis for wetland restoration and enhancement projects.
AUTHORS: Matthew Perlik, Ohio Department of Transportation
ABSTRACT: Over the last 10 years, Ohio DOT has spent over $40 million on landscape conservation and restortation projects. This money provides an enormous contribution to protected and restored lands throughout the 34th smallest state (by area) in the US with less than 5% public lands. ODOT has developed a program that works with non-profits, for profits, universities, federal agencies, and fellow state agencies to deliver aquatic and terrestrial conseration that is lower cost, exceeds ecological improvement requirements, and is delivered faster than traditional methods. This process has expanded preserved lands, lands for recreation, and the holdings of entities dedicated to conservation. Using recent case studies, this paper will focus on the challenges and successes of working with a state DOT to deliver successful conservation within a highly developed state landscape.
AUTHORS: Cory Wilson, U.S. Army Corps of Engineers, Huntington District
ABSTRACT: Aquatic resource restoration and enhancement projects, though beneficial, are often subject to the United States Army Corps of Engineers’ (Corps) regulatory authority under Section 404 of the Clean Water Act and/or Section 10 of the Rivers and Harbors Act of 1899. This portion of the symposium will provide a general overview of these Acts and the types of activities that do, and do not, require Department of the Army permits. In addition, a description of the typical Corps permitting/approval mechanisms for implementing these types of projects will be provided (e.g. Nationwide Permits and Mitigation Banking Instruments). Finally, a summary of the Ohio Stream and Wetland Valuation Metric and the Ohio Interagency Review Team guidelines for stream and wetland mitigation banking and in-lieu fee programs in the State of Ohio will be provided. Participants in this symposium will gain a general understanding of the requirements and tools necessary for implementing aquatic resource restoration and enhancement projects under the Corps regulatory authority.
AUTHORS: August Froehlich, The Nature Conservancy in Ohio
ABSTRACT: Our current era of stream and wetland mitigation began with the publication in 2008 of “Compensatory Mitigation for Losses of Aquatic Resources,” aka the 2008 Mitigation Rule. By publishing this document, the USEPA and the USACE established a new paradigm for the entire process of mitigating impacts to the nation’s streams and wetlands. One of the main concepts originally proposed was the watershed approach. The watershed approach is comprised of 5 elements to drive the strategic selection of compensatory mitigation and ensure the likelihood of a mitigation plan being both successful and sustainable. Each of the 5 elements are well suited for spatial analysis. From evaluating the landscape context of a HUC-6 watershed to identifying the potential project parcels, GIS analysis allows efficient implementation of all 5 of the elements. This presentation will use the identification of a stream restoration site to provide examples of the watershed approach. Data sources, analysis methods, and supporting documents will all be discussed.
ABSTRACT: There are many riverine factors that need to be scrutinized for stream restoration. Some of these factors are fluvial processes, riverine channel characteristics, thermal regimes, longitudinal and lateral connectivity, water quality and quantity, aquatic ecology, and physical habitat characteristics. All too often streams and rivers are restored based on a cookbook approach without addressing the causes of degradation or individual needs of the stream. Unfortunately, this approach creates a stream condition that does not match the natural integrity of the stream thereby creating a restoration project that will end up failing. Learning from past incompatible designs and stream restorations create a learning opportunity to develop more dynamic restoration designs that will keep that natural integrity of the stream intact. This talk will focus on stream characteristics, identification of a reference reach to mimic stream restoration design components, and lessons learned from past stream restoration designs.
AUTHORS: Amy Singler, The Nature Conservancy & American Rivers
ABSTRACT: Dam Removal is arguably the most effective tool we have for restoring river habitat and fish passage. The benefits of many dams may no longer outweigh the significant impacts to fisheries and habitat. Following dam removal we see rapid improvement in water quality, return of riverine species, restored habitat downstream and upstream of the former dam. Dam removal also eliminates maintenance requirements for owners and the potential danger of failure at unmaintained dams during floods. As the rate of dam removal has increased we are seeing positive results to fish and river habitat, and we are learning just what it takes to make projects successful.Dam removal design needs to focus on river processes and account for the dynamic nature of the rivers, while taking into account infrastructure, appropriate sediment management, and threatened and endangered species. Less can often be more when we approach dam removal engineering design. Increasingly, practitioners and regulators are finding the balance of acceptable short-term impacts and long term benefits. Using project examples this presentation will address: 1.) How to recognize and address key issues at dam removal projects in order to design projects that are self-sustaining and create lasting benefits for the suite of aquatic species in the river system; 2.) How to collaborate with regulatory agencies to address concerns of impacts from dam removal construction.
AUTHORS: Amy Brennan, Lake Erie Conservation Director for The Nature Conservancy; Jessica D'Ambrosio, Western Lake Erie Basin Agriculture Director for The Nature Conservancy
ABSTRACT: The Nature Conservancy will share lessons learned and partnerships necessary to restore wetlands, floodplains and streams throughout the Western Lake Erie Basin (WLEB) to reduce nutrient loads to Lake Erie and her tributaries and restore natural infrastructure throughout the Western Lake Erie Basin. TNC is working with conservation and agricultural community partners to restore natural infrastructure, including wetlands, riparian corridors, and floodplains in the Western Lake Erie Basin to expand, improve, and connect wildlife habitat. TNC established a goal of restoring 1% of the agricultural acres in the WLEB to natural infrastructure – wetlands, floodplains and riparian corridors that help to manage nutrients and water more effectively. We have completed initial modeling and mapping to identify the highest nutrient loading areas, best areas for restoring wetlands, and watersheds where stream improvement is likely if nutrients are reduced. We are currently working with partners on 6 restoration sites from engineering and design to full implementation to convert 500 acres of current agricultural lands to natural wetlands, riparian corridors and floodplains. In order to reach our goal of restoring 1% (56,000 acres) of agricultural lands, we will continue to engage and support partners and systematically build partnerships to scale up our restoration activities. This involves a combination of mapping to identify project areas and target areas that will have the most impact on downstream resources, building capacity among our traditional and nontraditional conservation partners and completion of engineering and design for restoration projects.
ABSTRACT: Since its inception in 1990, Partners in Flight (PIF) has taken progressive steps to provide useful range-wide landbird conservation vulnerability assessment at both continental and Bird Conservation Region (BCR) scales. The 2016 Landbird Conservation Plan for Canada and the U.S. introduced new metrics designed to more effectively communicate the urgency of addressing precipitous declines of both range-limited and wide-ranging common species—notably the concept of a "half-life": the forecasted number of years when an abundance that is half the current abundance is reasonably expected to be observed. PIF has also redesigned its website to make it easier to access all of its tools, including its Technical Series, Species Assessment database, Population Estimates database, regional and national conservation plans, and access to its email information and announcement list-serves. Highlighting communication with partners, the revised website provides a platform for exploring and distributing other recent Partners in Flight developments. The Species Assessment, renamed the PIF Avian Conservation Assessment Database (ACAD), now covers all taxa—landbirds, shorebirds, waterbirds, and waterfowl—for over 1600 species from Canada through Panama. The Population Estimates database now provides upper and lower uncertainty bounds around its median U.S./Canada breeding adult population size estimates at state-x-BCR scales. As part of the 2016 Plan, PIF offers recommendations for U.S./Canadian planning unit responsibility for recovering Watch List species and, by incorporating global eBird data, identifies areas of greatest importance for migrants during the non-breeding season to facilitate full life cycle conservation. Finally, a thorough partner review of all regional-scale (BCR) breeding season assessment scores in the U.S. and Canada has just been completed and is now live via the website. The revised regional breeding season assessment provides recommendations reflecting Midwest contributions toward continental bird conservation and identifies regionally important species and regional stewardship responsibilities using a standardized and quantitative methodology.
AUTHORS: Evalynn M. Trumbo, Michael P. Ward, Jeffrey Brawn – University of Illinois
ABSTRACT: Understanding associations between habitat and the demography of endangered wildlife is essential for effective management, and the age or life-stage of an individual adds complexity to these associations. The Golden-cheeked Warbler (Setophaga chrysoparia; hereafter "warbler"), is an endangered neotropical migrant that breeds only in the contiguous juniper-oak forests in central Texas, of which many studies have evaluated how extensive habitat loss and fragmentation affect adult demography, yet no research has been conducted on post-fledging life stages and their habitat preferences, specifically microhabitat. For birds, the post-fledging stage is critical for sustaining species’ populations and many threats to survival during this life-stage are influenced by habitat type. To understand survival and habitat use, we studied the warbler population at Fort Hood military installation in central Texas. We monitored warbler nests until fledging and deployed one VHF transmitter per nest (n=8 and n=15, for 2017 and 2018, respectively). We tracked fledglings ~4 weeks after fledging. 15 of 23 (65%) of the fledglings survived the observation period. We obtained 1126 vegetation samples measuring various habitat characteristics for the entirety of the study (2017-2018). We compared habitat measurements between fledgling locations and random locations away from the fledgling location. Fledglings appear to select habitat that contains higher canopy cover (86% ± 0.6%, vs. 77% ± 1%). Ground cover, although correlated with canopy cover, differs from non-used habitat (29% ± 0.9%, 37% ±1.05%). Vertical vegetation density in the understory does not differ among used and non-used habitat. Most likely fledglings are selecting for canopy cover since it affords more protection from predators. Using this information for habitat selection will allow managers to implement techniques that promote higher canopy cover in GCWA habitat, hopefully providing a mosaic of necessary traits to support all life stages during the breeding season.
AUTHORS: Stephen A. Tyndel, University of Illinois at Urbana-Champaign; Dr. Jinelle Sperry – CERL-ERDC, University of Illinois at Urbana-Champaign; Dr. Michael P. Ward, University of Illinois at Urbana-Champaign, Illinois Natural History Survey
ABSTRACT: Blue-winged Warblers (Vermivora chrysoptera) and Golden-winged Warblers (Vermivora cyanoptera) are closely related species that hybridize frequently and produce fertile offspring yet tend to mate assortively and often hold overlapping territories. Information on how conspecific and heterospecific interactions impact settlement and habitat selection for both species is lacking.The purpose of this study was to examine the role of social information, specifically song, in habitat selection in both Blue-winged and Golden-winged warblers. Our first objective was to determine if conspecific and heterospecific song can be used to induce settlement in Blue-winged and Golden-winged warblers across their range and whether the response of each species to heterospecific song differs in allopatric and sympatric populations. Our second objective was to determine whether Blue-winged and Golden-winged Warblers males discriminate against heterospecific song and whether discrimination against heterospecific song differs in in allopatric and sympatric populations. To address the first objective, we broadcast songs of Blue-winged warblers and Golden-winged warblers in an area where only Blue-winged warblers breed, where only Golden-winged warblers breed, and where both species breed. To address the second objective, we conducted a simulated territorial intrusion experiment to compare how breeding territorial males of each species respond to heterospecific song in an area where only Blue-winged warblers breed, where only Golden-winged warblers breed, and where both species breed. Data analysis is ongoing but preliminary results for the first objective suggest the strongest response to conspecific cues occurred in the allopatric population of Golden-winged warblers with equivocal results found elsewhere. Responses to heterospecific cues were similarly ambiguous. Preliminary results for the second objective suggest strong species discrimination in sympatry and weak discrimination in allopatry. Ultimately our results will provide important insight into the relationship between these species and the role of social information in habitat selection.
AUTHORS: Benjamin W. Tjepkes, Stuart C. Fetherston, Scott E. Hygnstrom – Wisconsin Center for Wildlife, College of Natural Resources, University of Wisconsin-Stevens Point; Brian J. Stemper, Stephen L. Winter – Upper Mississippi River National Wildlife and Fish Refuge, U.S. Fish and Wildlife Service
ABSTRACT: The overall population of bald eagles (Haliaeetus leucocephalus) has increased in range and size across much of North America, since they were listed as a federally Threatened Species in the 1970’s. This increase likely is due in part to the efforts of several federal and state wildlife management agencies in protecting nest sites, an important factor in raptor reproduction. We studied nest-site selection in bald eagles along the 420-km long Upper Mississippi River National Wildlife and Fish Refuge using survey data from 1990 – 2012. Spatial analyses were conducted on known active nest locations using a GIS to develop several metrics relating to bald eagle nesting ecology (e.g., distance to water, surrounding cover type, patch size) and several disturbance metrics (e.g., distance to navigable channel, distance to road). These metrics will then be used to build a mixed-effects resource selection function under a use-availability design for this population. This information will increase the understanding of how bald eagles occupy habitats along the Upper Mississippi River in relation to habitat features and human activities, further contributing to the effective management of this species.
AUTHORS: Luke J. Malanchuk, Michael P. Ward – Illinois Natural History Survey; Heath M. Hagy, U.S. Fish & Wildlife Service; Aaron P. Yetter, Forbes Biological Station, Frank C. Bellrose Waterfowl Research Center
ABSTRACT: The Illinois River Valley (IRV) serves as a crucial stopover area for migratory shorebirds in the midwestern United States despite the high prevalence of row crop agriculture and extensive wetland loss and degradation in the region. Aerial surveys are commonly used to quantify waterfowl abundance and estimate population size, but few attempts have been made to evaluate aerial surveys for other guilds of wetland birds. We investigated whether aerial surveys may provide a good estimate of shorebird use of stopover sites in the IRV. During July-September 2017-2018, and April-May 2018, we conducted concurrent ground and aerial surveys at 5-7 sites per week. Additionally, a single observer counted and assigned all shorebird detections to either "large" (Killdeer (Charadrius vociferous) and larger) or "small" (Pectoral sandpiper (Calidris melanotos) and smaller) size classes, and recorded wetland habitat characteristics at a total of 96 surveyed sites in the IRV. The use of ground counts each survey allows for the calculation of aerial detection probability count bias, while using habitat data of the specific count location from the ground as a correction factor. Aerial surveys detected 89% (N = 93, Range = 0%-250%) of individuals counted during ground surveys. The total number of shorebirds counted in the IRV each week ranged from 1,705 to 30,290, with an average of 10,025 birds. Aerial surveys appear to be an accurate and efficient method to quantifying shorebird abundance along large-river systems. Future plans include questions associated with stopover duration and which species are present in the IRV.