Welcome to the interactive web schedule for the 2019 Midwest Fish & Wildlife Conference! Please note, this event has passed. To return to the main Conference website, go to: www.midwestfw.org.

For tips on navigating this schedule, click HELPFUL INFO below.

CONFERENCE SCHEDULE UPDATES & CHANGES: As a result of the prolonged government shutdown, we experienced a number of cancellations and changes to the schedule. Cancellations and changes are listed here (as of January 26, 2019). 

Sign up or log in to bookmark your favorites and sync them to your phone or calendar.

CENTER STREET ROOM B [clear filter]
Sunday, January 27

9:00am EST

(CANCELLED) (WORKSHOP) Climate Change Adaptation for Wildlife Managers: A Hands-on “Workbook” Process (discount available for North Central Section members of TWS)
Wildlife managers face the growing challenge of helping wildlife populations and ecosystems respond to climate change. This active, hands-on workshop will help participants consider climate change and develop custom-built adaptation actions into their own real-world projects (e.g., Wildlife Management Area plan; population recovery plan). Through this workshop, participants will be able to: describe regional and local effects of climate change on wildlife in the Midwest, understand climate adaptation concepts in the context of terrestrial wildlife management, and develop custom-built actions to enhance the ability of wildlife to adapt to changing conditions.

Intended Audience: This workshop is for professional wildlife managers, including staff members from consulting firms; NGO conservation organizations; and employees of federal, state, tribal, and county agencies. We ask participants to bring their own real-world projects to consider at this workshop. Example projects include: a habitat management plan for a state Wildlife Management Area, a population plan for a sensitive or harvested species, or a landscape-scale wildlife management plan among several agencies. We encourage small teams of 2-5 people to work together at the workshop, but individuals working on their own are also welcome.

Presenters: Olivia LeDee, Northeast Climate Adaptation Science Center; Chris Hoving, Michigan Dept. of Natural Resources; and Stephen Handler, US Forest Service and Northern Institute of Applied Climate Science

Sunday January 27, 2019 9:00am - 5:00pm EST
Monday, January 28

10:20am EST

(HUMAN DIMENSIONS: FISHERIES 1) What Makes Anglers Happy: A Sentiment Analysis of Walleye Angler Fora in the United States
AUTHORS: Kirsten Vacura, Paul Venturelli – Ball State University

ABSTRACT: Human behavior is an important factor in natural resource management. Obtaining the public’s opinion – for example, through creel, mail, and phone surveys – can be time consuming and expensive. Analyzing the text that hunters and anglers contribute to online fora may be a faster and cheaper alternative. In this study, we used walleye (Sander vitreus) oriented online fora to compare and explain the “happiness” of walleye anglers among and within ten U.S. states. We used sentiment analysis to score text data from each state as positive, negative, or neutral, and then normalized these scores by expressing them relative to the baseline level of happiness in each state. We determined the extent to which fisheries management explained variation in “happiness” scores within and among states via statistical analyses that included such factors as regulation strictness and complexity, angler density, stocking programs, and transparency of the state's natural resource agency. Although we did not generate results in time for the abstract deadline, we are confident that we will explain some variation and have interesting things to report at the meeting.

Monday January 28, 2019 10:20am - 10:40am EST

10:40am EST

(HUMAN DIMENSIONS: FISHERIES 1) You Can Have Your Fire Hose and Drink from It, Too: An Expert-Approved Approach to Using Angler Apps to Generate Large Volumes of Usable Data
AUTHORS: Paul Venturelli, Ball State University; Kieran Hyder, Cefas; Tonie Aarts, Royal Dutch Angling Association; Rob Ahrens, University of Florida; Michael Allen, University of Florida; Paul Askey, Freshwater Fisheries Society of British Columbia; Johan Attby, Fishbrain; Leah Baumwell, International Game Fish Association; Peter Belin, Swedish Anglers Association; Scott Bonar, U.S. Geological Survey Arizona Cooperative Fish and Wildlife Research Unit; Shannon Bower, Uppsala University; Adam Brown, Substance; Steve Cooke, Carleton University; John Curtis, Ireland Economic and Social Research Institute; Andy Danylchuk, University of Massachusetts; Brett Fitzgerald, The Snook and Gamefish Foundation; David Fulton, U.S. Geological Survey Minnesota Cooperative Fish and Wildlife Research Unit; Jon Giacalone, Fishidy; Rob Houtman, Pacific Biological Station; Len Hunt, Ontario Ministry of Natural Resources and Forestry; Matt Johnson, C-Map; Jan Kamman, Royal Dutch Angling Association; Steve Kelling, Cornell Lab of Ornithology; Elizabeth Overstreet, NOAA Southeast Fisheries Science Center; Kevin Pope, U.S. Geological Survey Nebraska Cooperative Fish and Wildlife Research Unit; Tim Sartwell, NOAA Fisheries Service; Sean Simmons, Angler's Atlas; David Stormer, Florida International University; Christian Skov, Technical University of Denmark

ABSTRACT: Angler smartphone applications (apps) are a new tool for efficiently collecting conventional and novel fisheries data, and have the potential to fundamentally change how anglers interact with the resource. Given that the angler app market is diverse, competitive, and unpredictable, an important step in realizing the potential of angler apps is to develop standards that will ensure a large and reliable data stream for scientific study. To that end, we convened a workshop that was attended by representatives from 11 angler apps, and 22 experts in recreational fisheries, human dimensions, economics, data management, citizen science, and standards. A pre-workshop survey of participants identified gaps between fisheries data needs and the data that angler apps were collecting. We addressed these gaps during the workshop by cataloguing the importance and specific needs associated with 49 data fields (i.e., standards), and then determining whether apps can deliver on these standards. We concluded that any standard can be met, but that anglers will only be willing to supply data for a subset of these standards. Therefore, we propose an initial set of standards that are important to fisheries and/or easy to obtain (e.g., via automation). The consensus among workshop participants was that these standards should be maintained by a science-based and international standards council. This council should also maintain a repository of participating angler apps (including which standards they meet, the amount of data that they have, and for which locations), and any data that participating apps are willing to share. Access to these data will be controlled by the standards council, and in accordance with terms that have been set out by each participating app.

Monday January 28, 2019 10:40am - 11:00am EST

11:00am EST

(HUMAN DIMENSIONS: FISHERIES 1) Assessing Opinions Toward Native Fish Management in the Black Hills Region of South Dakota
AUTHORS: Seth J. Fopma, South Dakota State University; Larry M. Gigliotti, US Geological Survey

ABSTRACT: Fisheries management has traditionally focused on the preservation and proliferation of fishes valued by the managing society. Typical management has almost exclusively focused on ‘sport’ and native fishes. Recent trends in societal values have extended the management of fisheries to include non-game species. Mountain Sucker, Catostomus platyrhynchus, is a native, non-game species of conservation concern in South Dakota. Recent surveys suggest that Mountain Sucker have declined in both distribution and density across the Black Hills. To properly assess the best-management practices for Mountain Sucker in the region, we must assess the societal attitudes towards the active management of native species. A stratified-random sample of Black Hills area residents (4,200) were surveyed using a modified Tailored design method (24% return) to assess attitudes towards native, non-game fisheries management in the Black Hills. K-means cluster analysis was used to categorize respondents into three distinct groups (apathetic, utilitarian angler, and conservation angler) defined by attitudes towards native fisheries management. Further analysis revealed significant differences in angling activity between groups. Results will guide managers towards appropriate native fish management practices.

Monday January 28, 2019 11:00am - 11:20am EST

11:20am EST

(HUMAN DIMENSIONS: FISHERIES 1) Framing Social Values: How Small Fisheries Can Improve Quality of Life in South Dakota
AUTHORS: Aaron Sundmark (Ph.D. Student), Larry Gigliotti (Professor) – South Dakota State University

ABSTRACT: Sportfishing management focuses on fish resources, as well as the people using these resources. Therefore, evaluating management performance requires assessing both environmental and human-centered outcomes of a fishery. Over 400 small lakes in South Dakota are managed by the state agency to provide convenient opportunities to anglers and other recreational user groups. In January of 2017, a total of 3,753 questionnaires were mailed to residents near 7 small lakes that were diverse spatially and in their proximities to larger urban centers across South Dakota. We received completed surveys from 1,318 respondents (40% response rate). We measured the value of the lake to residents’ quality of life (dependent variable), familiarity with the lake, activities done at the lake, evaluations of conditions and amenities at the lakes and demographic variables. Analyses determined the uses, attitudes and values towards small lakes that are best at predicting their importance to local citizens’ overall quality of life living in nearby communities. Our findings suggest that the inclusion of social values in efforts to evaluate an agency’s management performance could help managers understand and predict the various user groups and the amount of overall use a lake resource will receive over time.

Monday January 28, 2019 11:20am - 11:40am EST

11:40am EST

(HUMAN DIMENSIONS: FISHERIES 1) Fishing for Answers: Restoration in the St. Clair-Detroit River System Improves Angling Opportunities
AUTHORS: Dana Castle, Central Michigan University, Tracy Claramunt, Michigan Department of Natural Resources, Ed Roseman, U.S. Geological Survey Great Lakes Science Center, Tracy Galarowicz, Central Michigan University

ABSTRACT: Within the St. Clair-Detroit River System (SCDRS), fish and wildlife habitat and water quality have historically been degraded, however in 2004, extensive restoration projects began on this system to remediate past degradation. Post-monitoring of restoration areas conveys improving biota of the region, including improvement in Burbot, Lake Sturgeon, Walleye, and Lake Whitefish. Although species are improving in the region, the response of anglers in the region remains unknown. In 2002-2005, an extensive creel survey was conducted, however, since that time, there has been no other extensive analysis of the anglers in the SCDRS. We analyzed post-restoration creel data by calculating interview catch rates, interview harvest rates, and examining supplemental questions collected by the Michigan Department of Natural Resources (MDNR). We also estimated the economic value of a recent creel survey by using estimated lodging and gas expenses of interviewed anglers in the SCDRS. We examined interest in fishing in the SCDRS by examining Google Trends data. For Lake St. Clair and the Detroit River, there were larger interview catch and harvest rates in post-restoration periods than in pre-restoration periods. We determined that the 2017 open water fishery on Lake St. Clair was worth approximately $11.87 million. Search terms related to the Detroit River and show a significant upward trend, indicating a rise in fishing interest in the region. Because of the increased travel, interview catch, interview harvest rates, and interest in Lake St. Clair and the Detroit River, anglers are likely capitalizing on increased fishing opportunity in these parts of the system. Another extensive creel survey, similar to the one conducted in the early 2000s, would be helpful in further determining the influence of restoration on angling opportunities in the SCDRS and if anglers are acting to remediate restoration costs.

Monday January 28, 2019 11:40am - 12:00pm EST

1:20pm EST

(HUMAN DIMENSIONS: WILDLIFE) Use of Surveys to Enhance R3 Programs
AUTHORS: Kristen Black, Illinois Learn to Hunt; Daniel Stephens, Illinois Learn to Hunt; Craig Miller, Illinois Natural History Survey

ABSTRACT: Surveys are commonly used to drive the development of public programs and to determine efficacy of those programs. This presentation will discuss how the Illinois Learn to Hunt program has used a series of surveys given to program participants and the public to drive the creation of a successful hunter recruitment, retention, and reengagement (R3) program in Illinois. Topics to be covered include, but are not limited to, survey creation, survey implementation, statistical analyses, and how survey results affect program management and execution.

Monday January 28, 2019 1:20pm - 1:40pm EST

1:40pm EST

(HUMAN DIMENSIONS: WILDLIFE) Psychological Involvement and Constraints to Hunting Participation: Implications for R3 Research
AUTHORS: Adam Landon, Illinois Natural History Survey; Craig Miller, Illinois Natural History Survey; Jerry Vaske, Colorado State University; James Absher, Environmental Sociologist

ABSTRACT: Research on recruitment, retention, and re-engagement (R3) has become increasingly important for fish and wildlife management agencies that are seeking to bolster participation in hunting and fishing, and ensure fiscal sustainability through increased license sales. To date, however, much of the literature surrounding R3 has been ad hoc with respect to theory explaining patterns of recreation behavior. In this study, we drew on the human dimensions literature to understand the influence of psychological involvement and perceived constraints on hunters’ commitment to the activity as potential new explanatory frameworks for R3 research. We hypothesized that hunters’ psychological involvement in the activity positively influenced their prolonged engagement, operationalized from patterns of hunting license purchase, and that perceived constraints had a negative effect. Data for this study were drawn from a large-scale cohort-based survey of Illinois hunters (n=6,000). Hunters were randomly sampled in age cohorts at two-year intervals based on their date of hunting license purchase over the period 2006-2018. Results suggested that psychological involvement may play an important role in hunters’ commitment to the activity, but that hunters placed different levels of importance on different aspects of involvement. Findings further suggested that perceived constraints negatively influenced commitment, whereby more constrained hunters’ were less engaged over time. Results of this study have implications for mechanism for R3 activity. Although demographic changes underpin broad patterns of hunting license sales, additional factors like involvement and constraints may account for commitment to the activity.

Monday January 28, 2019 1:40pm - 2:00pm EST

2:00pm EST

(HUMAN DIMENSIONS: WILDLIFE) Guiding Hunter Recruitment, Retention, and Reactivation: A Market-Driven Approach
AUTHORS: Dan Stephens, Kristen Black, Dr. Craig Miller – Illinois Natural History Survey

ABSTRACT: Hunters in Illinois have long faced constraints to hunting. Socioeconomic and demographic trends suggest that the public is becoming isolated from the relevancy and importance of hunting. The Illinois Department of Natural Resources and the Illinois Natural History Survey have partnered on an adult hunter recruitment initiative aimed at addressing a long-term decline in hunter numbers. In order to develop an objective strategy to mitigate the decline of hunting participation in Illinois, an analysis of market segments, messaging, and imagery is needed to guide hunter recruitment, retention, and reactivation (R3) efforts. Using web tracking, hunter harvest surveys, license buying data, focus groups, and socioeconomic data the Learn to Hunt program was able to define distinct market segments, market characteristics, and marketing themes. These market segments are defined as: locavores, nature lovers, competitors, and social enthusiasts. Web tracking through newsletters, social media, and program website analytics allowed for testing the response rate of various messages and imagery. Moving forward, R3 programs will need to develop a comprehensive marketing plan that cumulatively addresses market segmentation aimed at testing the effectiveness of various messaging themes and imagery.  

Monday January 28, 2019 2:00pm - 2:20pm EST

2:20pm EST

(HUMAN DIMENSIONS: WILDLIFE) University Students and Bears: Understanding Attitudes Among Future Stakeholders
AUTHORS: Haley Netherton, Mike Rader, Shawn Crimmins, Brenda Lackey, Cady Sartini – University of Wisconsin-Stevens Point

ABSTRACT: Increasing global bear populations and human-bear conflicts have made it more imperative to understand public attitudes towards bears and management interventions. Management methods vary in effectiveness and public support, further complicating the management of bears and other large carnivores. Without proper understanding of public attitudes towards bears and specific management actions, conflict can ensue between stakeholders and managers. To address this need, we conducted a survey of undergraduate and graduate students at the University of Wisconsin-Stevens Point (UWSP), as they will become the next stakeholders and policymakers. The objective of our study was to evaluate university student attitudes towards bears and their management and determine the associated factors, including personal experience with bears, socio-cultural influences, and stakeholder group membership. UWSP students tend to favor education and relocation as management tools, with education creating the least conflict. Destruction of the bear is more favorable as conflict escalates, but remains fairly controversial. Our results suggest that college of study and personal experience may be correlated with attitudes towards management interventions. Significant differences in students grouped by attitude towards bears were found for multiple management actions across several encounter situations. Students in the positive attitude group significantly differed from students in the mixed/negative attitude group in their responses towards monitoring the situation, providing education for locals, and destruction of the bear in all five contexts of increasing conflict in a neighborhood setting (all p < 0.001). The effect sizes for these differences suggest minimal to substantial relationships between respondents’ general attitude towards bears and their attitude towards a management action in a specific encounter context (d = 0.304-0.894). The results of this study will contribute to the greater body of literature that can be used to inform the best management options for bears and other large carnivores in a particular socio-demographic context. 

Monday January 28, 2019 2:20pm - 2:40pm EST

2:40pm EST

(HUMAN DIMENSIONS: WILDLIFE) Tolerance of Restored Wildlife: Landowner Attitudes Toward Elk in Northwest Minnesota
AUTHORS: Eric Walberg, Minnesota Cooperative Fish & Wildlife Research Unit, University of Minnesota; Gino D'Angelo, Warnell School of Forestry & Natural Resources, University of Georgia; David C. Fulton, U.S. Geological Survey, Minnesota Cooperative Fish & Wildlife Research Unit; Lou Cornicelli, Minnesota Department of Natural Resources

ABSTRACT: Reintroduction is an important tool used to restore elk (Cervus elaphus) populations to their native ranges in North America, though private landowners may be negatively impacted due to damage to private property (e.g., agricultural crops, fences). Restoration of elk populations in northwest Minnesota began in the 1920’s, yet elk numbers have remained low and the species is currently managed at low levels to reduce human-wildlife conflicts. The long-term viability of elk populations in Minnesota depends on landowner tolerance and public support for elk. Past studies have found that most individuals affected by elk normally do not participate in actions that impact the elk population, though as human-elk interactions increase individuals’ start undertaking actions either negatively or positively impacting the elk population. Actions that negatively impact wildlife indicate intolerance of a species and actions that positively impact a species indicate stewardship. We conducted a census of landowners within elk range in northwest Minnesota (N = 768) using a mail-based questionnaire to assess landowner attitudes toward elk and elk management in northwest Minnesota. Our theoretical framework posits that tolerance can be represented using three concepts: (1) Wildlife Acceptance Capacity (WAC); (2) attitudes toward elk; and (3) trust in the responsible management agency. Our research objectives were to understand tolerance of elk in northwest Minnesota among landowners and determine the effectiveness of our model at measuring tolerance of elk populations. The analysis supported two conclusions: (1) a majority of landowners have neutral tolerance attitudes toward elk (55%), and (2) landowner attitudes toward elk and WAC are effective measures of landowner tolerance of the elk population in northwest Minnesota.

Monday January 28, 2019 2:40pm - 3:00pm EST

3:20pm EST

(FISHERIES: HABITAT) Hypoxia Alters Spatial Overlap of Primary and Secondary Consumers in the Pelagic Food Web of Reservoirs
AUTHORS: Rebecca A. Dillon, Aquatic Ecology Laboratory, Department of Evolution, Ecology, and Organismal Biology, The Ohio State University; Joseph D. Conroy, Inland Fisheries Research Unit, Division of Wildlife, Ohio Department of Natural Resources; Stuart A. Ludsin, Aquatic Ecology Laboratory, Department of Evolution, Ecology, and Organismal Biology, The Ohio State University

ABSTRACT: Hypolimnetic hypoxia has been shown to affect individual behavior, food web structure and interactions, and ecosystem function in aquatic ecosystems worldwide. While recent research has explored the impact of hypolimnetic hypoxia on coastal marine and large-lake food webs, less is known about the effects of hypoxia on reservoir food webs, especially pelagic ones. To address this gap, we examined how the spatial distribution of primary consumers (zooplankton) and secondary consumers (i.e., zooplanktivorous fish, clupeids; vertically migrating, hypoxia-tolerant, macroinvertebrates, Chaoborus spp.) varied between periods of normoxia (spring) and hypoxia (summer) in two small (surface area = 13.5, 11.7 km<sup>2</sup>), shallow (average depth = 6.6, 5.7 m) Ohio reservoirs. We tested the hypothesis that hypolimnetic hypoxia increases spatial overlap among zooplanktivorous fish, macroinvertebrates, and their potential zooplankton at night, whereas it reduces their overlap during the day because hypoxia-tolerant macroinvertebrates can use the hypoxic hypolimnion (and their zooplanktivorous fish predators cannot). We used net tows and hydroacoustics to describe the distribution and spatial overlap of zooplankton, Chaoborus, and zooplanktivorous fish during both day and night, and simultaneously measured physiochemical attributes (e.g., temperature, dissolved oxygen concentration, light levels). We found partial support for our hypothesis, as the overlap (determined from visual examination of net tow and hydroacoustics data) between fish and zooplankton was always high during periods with hypoxia, and was only high at night during normoxia. The overlap between Chaoborus and zooplankton was higher at night than during the day during periods of both normoxia and hypoxia, as Chaoborus were found at all depths during the day. Fish, Chaoborus, and zooplankton had the greatest spatial overlap at night during hypoxic periods. Our findings highlight the potential for hypoxia to alter pelagic food-web interactions in reservoir ecosystems.

Monday January 28, 2019 3:20pm - 3:40pm EST

3:40pm EST

(FISHERIES: HABITAT) Projected Temperature Increases Decrease Sport Fish Habitat Quality in Ohio Reservoirs
AUTHORS: Richard R. Budnik, Ohio Department of Natural Resources, Division of Wildlife, Inland Fisheries Research Unit; Geoffrey B. Steinhart, The Ohio State University, Department of Evolution, Ecology and Organismal Biology, Aquatic Ecology Laboratory; Joseph D. Conroy, Ohio Department of Natural Resources, Division of Wildlife, Inland Fisheries Research Unit; Richard D. Zweifel, Ohio Department of Natural Resources, Division of Wildlife; Stuart A. Ludsin, The Ohio State University, Department of Evolution, Ecology and Organismal Biology, Aquatic Ecology Laboratory

ABSTRACT: Increased temperatures due to climate change will likely decrease the quality and quantity of habitat available to reservoir sport fish, although the extent of the effect will likely be variable by species. We developed bioenergetics models to estimate growth rate potential (GRP), a metric of habitat quality, for Largemouth Bass, saugeye, and White Crappie during a 13-year span (2005–2016) in three Ohio reservoirs that varied in productivity (summer 2012–2014 concentrations: chlorophyll a 7–55 µg/L; total phosphorus 21–106 µg/L). We contrasted these baseline measures of habitat quality with projected future changes in GRP and high-quality habitat (HQH; GRP > 0) availability under stabilizing (RCP 4.5) and increasing (RCP 8.5) carbon emission scenarios which estimate air temperatures will increase 2.5 and 4.8 degrees C by 2099. Our simulations predicted Largemouth Bass, saugeye, and White Crappie GRP would decrease an average of 0.001 g/g/day, 0.003 g/g/day, and 0.007 g/g/day, respectively, under RCP 4.5, and 0.005 g/g/day, 0.004 g/g/day, and 0.013 g/g/day under RCP 8.5. The average reduction of HQH was greatest for saugeye (20% loss) under RCP 4.5 and for White Crappie (45% loss) under RCP 8.5. Largemouth Bass HQH was the least affected with an average reduction of < 9% under both scenarios in all reservoirs. Temperature increases in the highest productivity reservoir led to the greatest reduction in habitat quality and quantity among reservoirs. These outcomes, as shaped by temperature changes, have the potential to influence not only the performance of individual fish but also will affect population dynamics, trophic interactions, and fish community structure.

Monday January 28, 2019 3:40pm - 4:00pm EST

4:00pm EST

(FISHERIES: HABITAT) Comparing the Effects of Artificial Habitat and Coarse Woody Habitat on Macroinvertebrate Communities and Largemouth Bass Growth
AUTHORS: Eric J. Gates, University of Illinois Urbana-Champaign; Anthony Porreca, Illinois Natural History Survey; Joseph Parkos III, Illinois Natural History Survey; David H. Wahl, University of Illinois Urbana-Champaign.

ABSTRACT: Lentic ecosystems are negatively affected by habitat degradation due to reservoir senescence and riparian zone development. The addition of coarse woody habitat (CWH) and artificial habitat (e.g., plastic fish attractors) is a popular management strategy used to enhance systems that have experienced declines in habitat availability. However, the mechanisms by which CWH and artificial habitat additions influence aquatic food webs remain understudied. We introduced either artificial habitat structures or CWH (Quercus alba) into ten 0.04-ha experimental ponds to test whether macroinvertebrate communities and largemouth bass growth differed between introduced habitats. The experiment ran for three months and structures were allowed to condition for one month prior to stocking juvenile largemouth bass. Macroinvertebrate communities were similar between habitat types. However, more taxa were found on the artificial structures and macroinvertebrate communities colonizing CWH appeared to increase relative to artificial habitat by the end of experiment. Largemouth bass growth did not differ between CWH and artificial habitat. Although not specifically tested, macroinvertebrate communities appeared to be influenced by the presence and amount of periphyton colonizing habitat structures. Our results indicate that habitat material itself was not as important as providing a stable substrate for primary production and subsequent macroinvertebrate colonization. Longer experiments may be necessary to determine the maximum influence of these habitats on primary and secondary productivity, particularly as CWH conditions.

Monday January 28, 2019 4:00pm - 4:20pm EST

4:20pm EST

(FISHERIES: HABITAT) The Influence of Season and Streamflow on Habitat Selection of Spotted Bass and Shorthead Redhorse Downstream of a Hydropeaking Dam in Central Missouri, USA
AUTHORS: Elisa Baebler, Missouri Cooperative Fish and Wildlife Research Unit, The School of Natural Resources, University of Missouri; Craig Paukert, U.S. Geological Survey, Missouri Cooperative Fish and Wildlife Research Unit, The School of Natural Resources, University of Missouri

ABSTRACT: Downstream of hydropeaking dams, water depth and velocity fluctuate rapidly, which leads to short-term changes in physical habitat supporting aquatic organisms. While some fish species have been extirpated from flow-regulated systems, other species flourish, which may be related to the persistence of critical habitats complementary to these life histories. We used radio telemetry to evaluate the influence of season and streamflow on the habitat selection of two common, native fishes downstream of Bagnell Dam in central Missouri from April 2016 to June 2017. We studied Spotted Bass (Micropterus punctulatus), nest-guarding, sight feeding, habitat generalists and Shorthead Redhorse (Moxostoma macrolepidotum), fluvial dependent, migratory, benthic feeders. Spotted Bass selected moderate depths near submerged cover in all seasons and slow velocities during spring and summer. Conversely, Shorthead Redhorse preferred moderately deep and faster flowing habitats during spring and summer and used slow velocities and shallow depths during winter. Spotted Bass and Shorthead Redhorse selected velocity, depth, submerged cover, and distance to shore during stable and/or fluctuating flows, suggesting that fish may respond to streamflow over short time periods (daily). Spotted Bass used slow velocities (less than 0.4 m/s) in both fluctuating and stable flows, whereas, Shorthead Redhorse preferred fast velocities (greater than 1.0 m/s) in stable flows but did not select velocity during fluctuating flows. Shorthead Redhorse and Spotted Bass habitat selection illustrates that even native fish that prosper in regulated rivers have habitat requirements which may be better met through managing flow releases to maintain river habitats that support native fish of multiple guilds.

Monday January 28, 2019 4:20pm - 4:40pm EST

4:40pm EST

(FISHERIES: HABITAT) Assessment of the Accuracy of Spatially Interpolated Brook Trout Habitat in Northeast Minnesota Streams
AUTHORS: Kathryn Renik, Dr. Andrew Hafs, Dr. Jeffrey Ueland – Bemidji State University

ABSTRACT: Developments in geographic information systems (GIS) and improved global positioning system (GPS) unit accuracy have allowed for advancement and are increasingly being used to collect spatial data in ecological studies. Benefits include decreased error in the field and ease of usability, allowing for quicker and more accurate field measurements. The objective of this study was to quantify the accuracy of predicted Brook Trout Salvelinus fontinalis habitat from spatially interpolated GIS maps generated using a Trimble Geo7x handheld GPS unit. Brook Trout habitat variables were collected at data points throughout 40 (200m) stream reaches during summer 2018 in Northeastern Minnesota. Data was recorded directly onto the Geo7x GPS unit and two different data point types were collected, data points for creating interpolated habitat maps (“map data points”) and reference data points.  A habitat suitability index model was utilized to predict Brook Trout habitat and produce spatially interpolated GIS maps by kriging. Quantification of interpolated map accuracy was determined by comparing the interpolated values to the reference data points. An error matrix was used to calculate overall accuracy, user’s accuracy, producer’s accuracy, and the kappa coefficient, allowing us to determine the ability of interpolated maps to accurately predict Brook Trout habitat. Accurate Brook Trout habitat maps provide management not only with tools to successfully manage the species, but also with illustrative visual aides that allow for improved communication within agencies and among the public.

Monday January 28, 2019 4:40pm - 5:00pm EST
Tuesday, January 29

10:20am EST

(FISHERIES: INVERTEBRATES) Characterizing Macroinvertebrate Community Changes of West Fork White River (1979-2015)
AUTHORS: Caleb Artz, Dr. Mark Pyron – Ball State University

ABSTRACT: Long term macroinvertebrate data (1979-2015) was used to describe and analyze community characteristics of West Fork White River in Muncie, IN. Family abundance, functional feeding group, taxon richness, and sensitivity were analyzed to describe patterns in assemblage shifts. Multivariate statistical analyses was used to determine significant temporal and spatial patterns in the data set. Observed shifts in long term macroinvertebrate data are likely due to advancements in water quality due to the Clean Water Act.

Tuesday January 29, 2019 10:20am - 10:40am EST

10:40am EST

(FISHERIES: INVERTEBRATES) Comparisons of Enzymatic Thermal Optima Among Native and Invasive Crayfish Species
AUTHORS: Hisham Abdelrahman, James Stoeckel – School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University; Jacob Westhoff, Missouri Department of Conservation

ABSTRACT: Previous researchers have shown that extraregional invasive crayfish possess certain life-history and ecological traits that facilitate their ability to successfully invade large areas in distant regions, whereas extralimital invaders tend to remain localized and occupy smaller ranges.  Physiological traits may provide additional explanatory power for realized and potential range of crayfish species. In this study, we tested for thermal performance differences related to respiratory physiology among multiple crayfish species with narrow to broad native and invasive ranges. We hypothesized that species with broad ranges would be thermal generalists relative to species confined to limited ranges. To test this hypothesis, we generated thermal performance curves of respiratory enzymes in the electron transport system (ETS) for 12 individuals from each of five species. Optimal thermal range was defined as the temperature range within which ETS enzyme activity was within 10% of the maximum observed value.  Contrary to our original hypothesis, optimal thermal range of respiratory enzymes was not correlated with geographic range, but was lowest in the most widespread species (Procambarus clarkii) which was also the only species with a strong propensity to burrow.  We also found that the two extraregional invaders (Faxonius virilis and P. clarkii) had significantly lower enzymatic activity levels at optimal temperatures than did the extralimital invader (F. neglectus) or the two native species with restricted ranges (F. eupunctus and F. marchandi).  Results thus far suggest that enzymatic thermal breadth may be more closely tied to habitat plasticity whereas enzyme activity level may be a more useful predictor of geographic range. Additional species are currently being analyzed to better assess the robustness of these conclusions.

Tuesday January 29, 2019 10:40am - 11:00am EST

11:00am EST

(FISHERIES: INVERTEBRATES) Abiotic and Biotic Factors Relating to Mermithid Infection Rates in Larval Midge (Chironomidae) Specimens in Northwestern Wisconsin Streams
AUTHORS: Macayla Greider, Jeffrey Dimick – Aquatic Biomonitoring Laboratory, University of Wisconsin-Stevens Point; Dr. Justin VanDeHey, Dr. Shelli Dubay – College of Natural Resources, University of Wisconsin-Stevens Point

ABSTRACT: Mermithid nematodes are generally considered as biological control agents for pest species like Anopheles, but also may influence Trout (Salmonidae) food sources because they cause reproductive failure and mortality in both midge (Chironomidae) larvae and mayfly (Ephemeroptera) nymphs.  However, much remains unknown about the mermithid life cycle and factors affecting their distribution. Our objectives were to determine if the prevalence of mermithid infections differed (1) between hosts with different feeding strategies, (2) in streams with different macroinvertebrate and fish communities, and (3) with stream flow rates. We hypothesized that (1) filter feeding midges would have higher prevalence of midge infection because filter-feeders passively ingest eggs whereas other midges seek out specific prey, (2) Trout streams would have fewer mermithids, and (3) stream flow would not be related to mermithid prevalence. Mermithid prevalence was assessed in samples collected from 48 streams during 2010-2014 from four northwestern Wisconsin counties. Infection was determined by observation of mermithids within midge bodies. Midges were identified to species to determine feeding behavior and distinguish filter feeders from non-filter feeders. Significantly lower proportions of mermithids were present in Trout streams than non-Trout streams, but no significant differences were present between mermithid presence and either HBI score or stream velocities. Chi-square analysis indicated no significant difference in prevalence between filter feeding and non-filter feeding groups; however, shredders had higher mermithid prevalence than other feeding groups. This research will provide insight into some aspects of mermithid life cycles and host selection.

Tuesday January 29, 2019 11:00am - 11:20am EST

11:20am EST

(FISHERIES: INVERTEBRATES) Evaluating Impacts of Rainbow Trout Farming on Macroinvertebrates in Neotropical Streams in Ecuador
AUTHORS: Dana G. Wessels, Biology Department, Grand Valley State University; Dr. Katherine Krynak, Department of Biological and Allied Health Sciences, Ohio Northern University; Dr. Ed Krynak, Department of Geography, Western University; Andrea Encalada, Universidad San Francisco de Quito, Ecuador; Dr. Eric Snyder, Biology Department, Grand Valley State University

ABSTRACT: Rainbow trout (Oncorhynchus mykiss) aquaculture has increased to accommodate growing human populations, but streams throughout the world are being adversely affected in the process. Understanding how stream ecosystems respond to trout farm effluent is necessary to propose well-informed management practices before habitat and biotic loss become unrecoverable. Our research compared macroinvertebrate communities and environmental parameters along two streams in the Pichincha region of Ecuador; one stream with five non-native rainbow trout farms, and the other stream without trout farms. Macroinvertebrates collected in non-trout farm and headwater (control) sites were compared to those collected at the outflow of the five trout farms. An analysis of similarity based on the non-metric multidimensional scaling analyses (NMDS) of the macroinvertebrate families in qualitative kick samples as well as the EPT genera from the Surber samples showed a significant difference between the three sampling groups (Global R = 0.536, p = 0.004 and Global R = 0.639, p = 0.001 respectively). SIMPER analyses determined the families and genera that contributed the greatest proportion of dissimilarity between the trout farm, non-trout farm, and headwater groups. The Andean Biotic Index pollution tolerance values and functional feeding groups of the most influential families were examined. AICc model selection and model averaging was used to evaluate potential environmental influence on macroinvertebrate community similarity. Model averaged parameter estimates of the interaction between specific conductivity (SC) and percent organic matter (OM) was predictive of the macroinvertebrate community differences between sampling sites from the kick samples. Our results indicated reduced water quality due to the effects of rainbow trout farm effluent. However, treatment methods are limited in this mountainous terrain. Therefore, we would suggest feeding efficiency and utilization of trout farm sludge as fertilizer to minimize the impact of these farms on the neotropical streams.

Tuesday January 29, 2019 11:20am - 11:40am EST

1:20pm EST

(CANCELLED) (FISHERIES: EARLY LIFE HISTORY) Effects of Winter Stream Habitat Conditions on Larval Brook Trout (Salvelinus fontinalis) Morphology at Swim up in Northern Michigan Streams
AUTHORS: Eric Miltz-Miller, Dr. Jill B.K. Leonard – Northern Michigan University

ABSTRACT: Several species of larval stream salmonids dwell in winter stream conditions from spawning through their early larval stages, yet relatively little is known about the effect of winter habitat variability on these fish. Three Northern Michigan streams were selected based on winter conditions: No ice (stable/unfrozen), dynamic/intermittent ice formation, or constant ice throughout the winter (stable/frozen). Streams had two study sites, each with two artificial redds, two incubation boxes, and two natural redds. Wild brook trout (Salvelinus fontinalis) were field spawned and the resulting embryos stocked into artificial redds/boxes in the stream from which the parent fish originated. Larvae were collected at swim up and evaluated for stage/morphology. Our results show that embryos transplanted to non-natal stream sites, with lower average winter temperatures than their natal streams, resulted in longer intra-gravel periods, and larvae swam up at a less developed stage than in their natal sites. These results are important since all the streams in the study are currently managed as a single population, yet considerable variability in larval characteristics was generated by small-scale winter habitat variability.  Further, these results allow us to consider effects on brook trout of predicted climate changes in small streams based on winter conditions.

Tuesday January 29, 2019 1:20pm - 1:40pm EST

1:40pm EST

(FISHERIES: EARLY LIFE HISTORY) Effect of Temperature on Growth, Energy Reserves, Survival, and Settling Time of Endogenous Pallid Sturgeon Scaphirhynchus Albus Larvae
AUTHORS: Joseph T. Mrnak, Department of Natural Resource Management, South Dakota State University; Steven R. Chipps, South Dakota Cooperative Fish & Wildlife Research Unit, South Dakota State University; Daniel A. James, U.S. Fish and Wildlife Service

ABSTRACT: Pallid Sturgeon Scaphirhynchus albus are a federally endangered species endemic to the Missouri River basin and the lower Mississippi River. Natural reproduction of Pallid Sturgeon is negligible in the Missouri River with a recruitment bottleneck believed to occur during the drift phase of endogenous development. Understanding factors that affect survival of Pallid Sturgeon larvae is key given their critical status and ongoing recovery efforts. In this study, we evaluated the effects of water temperature on growth, energy reserves, survival, and settling time of endogenous Pallid Sturgeon larvae (<25 mm TL). We tested three water temperature treatments at a velocity of 8.9 cm s<sup>−1</sup>; treatments included low temperature (18.7 °C), medium temperature (20.4 °C), and high temperature (23.3 °C). Larvae maintained at the high temperature exhibited significantly greater growth rate (1.05 mm d<sup>−1</sup>) than larvae maintained at medium and low temperatures (1.04 and 1.03 mm d<sup>−1</sup>, respectively). Energy reserves of Pallid Sturgeon larvae maintained in the high temperature treatment declined significantly compared to larvae in the medium and low temperature treatments. Moreover, larvae in the high temperature treatment experienced significantly greater mortality and settled on the bottom significantly faster than those in the medium and low temperature treatments. Increasing river water temperatures by manipulating water releases from upstream dams may provide a potential restoration option by shortening the development time and thus the drift distance required during the endogenous phase of Pallid Sturgeon larvae.

Tuesday January 29, 2019 1:40pm - 2:00pm EST

2:00pm EST

(CANCELLED) (FISHERIES: EARLY LIFE HISTORY) Larval Drift Sampling for Scaphirhynchus Sturgeon in the Mississippi and Missouri Rivers
AUTHORS: Kevin Haupt, U.S. Fish and Wildlife Service; Hae Kim, West Virginia University Division of Forestry and Natural Resources; Donovan Henry, U.S. Fish and Wildlife Service; Sara Tripp, Big Rivers and Wetlands Field Station Missouri Department of Conservation; Quinton Phelps, West Virginia University Division of Forestry and Natural Resources

ABSTRACT: Larval fish sampling can provide insight into early life vital rates, abundance, and drift dynamics. In riverine environments, larval fish drift dynamics may influence early-life survival. Further, field and lab studies have shown that drift dynamics vary across species. Thus, information during this life stage is imperative for proper conservation and management of riverine fishes. However, successfully sampling larval fishes in riverine environments presents various challenges (e.g., spatial and temporal coverage and sampling effectiveness). As it relates to Scaphirhynchus sturgeon, these challenges are exasperated when targeting larvae in fast flowing reaches of the Missouri and Mississippi rivers. Prior research suggests that Scaphirhynchus sturgeon are benthic post-hatch. Our objectives were to determine drift dynamics and origin of Pallid Sturgeon in the Missouri River, Middle Mississippi River, and Upper Mississippi. We sampled in river reaches above and below the confluence of the Misssouri River, above chain of rocks and below chain of rocks on the middle Mississippi. We employed two 1000µm mesh, rectangular framed-nets off both sides of the boat. Weights (45kg) were affixed to the bottom of each net, to keep nets upright. Additionally, flow-meters were affixed to the mouth of the nets to measure volume of water filtered. Nets were deployed from the boat via an electric winch. Sampling commenced in mid April and ended in late June.  Overall, approximately 3,500 larval drift samples were collected during the study period.  Preliminary results indicate we have captured drifting Scaphirhynchus sturgeon throughout the water column (i.e., surface, middle, and bottom) at all river reaches.  To this end, employing larval drift nets throughout the water column may provide additional insight into Scaphirhynchus sturgeon life history that will inform conservation and management of these species.

Tuesday January 29, 2019 2:00pm - 2:20pm EST

2:20pm EST

(CANCELLED) (FISHERIES: EARLY LIFE HISTORY) Phenology and Magnitude of Larval Fish Drift and Production Near the St. Marys River Rapids, MI
AUTHORS: Jason Gostiaux, Contractor at US Geological Survey; Edward F. Roseman, US Geological Survey; Robin L. DeBruyne, University of Toledo; Jason L. Fischer, University of Toledo; Ashley Moerke, Lake Superior State University; Kevin Kapuscinski, Lake Superior State University; Christopher Olds, US Fish & Wildlife Service; Faith Vandrunen, Contractor at US Geological Survey; Kaley Genther, US Fish and Wildlife Service; Ethan Binkowski, Lake Superior State University

ABSTRACT: The St. Marys River is the Great Lakes connecting channel connecting Lake Superior to Lake Huron and is the international border between Michigan, United States, and Ontario, Canada.  This large river has a variety of habitats present including lakes, wetlands, islands, tributaries, side channels, and main channels.  Water flow is regulated through the navigational locks and a series of 16 compensating gates immediately upstream of the area known as the St. Marys Rapids.  This area is considered an important spawning and nursery area for numerous fish species, although no research has been done to assess fish use or production.  To address this knowledge gap, active and passive larval sampling gears were used to measure the timing and abundance of larval fishes upstream and downstream of the St. Marys Rapids area from May-August 2018.  Drifting eggs and larvae were collected near the bottom and surface during weekly daytime and nighttime sampling.  Eggs and larvae of several native (suckers, sculpins, troutperch, minnows) and introduced species (rainbow smelt, salmonids) were collected at sites above and below the St. Marys Rapids area, however, larval fish and eggs were more abundant below the St. Marys Rapids.  Furthermore, salmonid and lake sturgeon larvae were only captured downstream of the rapids area.  Lake sturgeon larvae have been documented in the Garden River, Ontario, a tributary of the St. Marys River, however, this is the first contemporary documentation of successful lake sturgeon spawning and larval drift within the St. Marys River proper.  Evidence of fish use of the St. Marys Rapids including the presence of multiple sensitive species, confirms the importance of this area for spawning, production, and biodiversity.

Tuesday January 29, 2019 2:20pm - 2:40pm EST

2:40pm EST

(FISHERIES: EARLY LIFE HISTORY) Maturation of Artificial Fish Spawning Reefs in the St. Clair-Detroit River System
AUTHORS: Jason L. Fischer, University of Toledo, Lake Erie Center; Edward Roseman, US Geological Survey, Great Lakes Science Center; Christine Mayer, University of Toledo, Lake Erie Center; Todd Wills, Michigan Department of Natural Resources, Lake St. Clair Fisheries Research Station

ABSTRACT: Artificial rock reefs have been used to remediate spawning substrates for lithophilic spawning fishes (e.g., Lake Sturgeon, Acipenser fulvescens;Lake Whitefish, Coregonus clupeaformis; and Walleye, Sander vitreus) in the St. Clair-Detroit River System. Early projects used species specific metrics (e.g., proximity to historic spawning locations) to guide reef placement. However, long-term success of some of the initial reefs was compromised by accumulation of fine sediments. Therefore, to improve the likelihood of successful reef function, project managers incorporated geomorphological criteria in 2013 to avoid placing reefs in areas near sediment sources and depositional zones. To evaluate the effectiveness of the revised placement process, we quantified physical maturation of artificial reefs using 1) annual down-looking and side-scan sonar surveys beginning in 2014 to measure reef areas and bottom roughness and 2) underwater video surveys beginning in 2015 to quantity sediment composition. Roughness of reefs constructed after 2013 remained greater than bottom roughness in areas adjacent to the reefs thru 2017, however, roughness of the Hart’s Light Reef was significantly lower in 2017 than in 2014, indicating some sediment accumulation. Similarly, sediment composition of the reefs remained similar thru 2017 and prevalence of reef rock was high, except at Hart’s Light Reef, where dreissenid mussel shells composed 32% of the substrate by age three. However, in 2018 reef rock was less prevalent at all reefs, due to accumulation of shells, fine sediments, and gravel. Despite the use of geomorphic criteria to identify areas most suitable for reef construction, sediment composition of the reefs has changed and long-term evaluation is required to determine if the changes observed in 2018 are temporary or representative of a longer trend. Nevertheless, our evaluation indicates future reef restoration projects could benefit by incorporating methods for maintenance, in addition to using geomorphic criteria to identify restoration sites.

Tuesday January 29, 2019 2:40pm - 3:00pm EST

3:20pm EST

(FISHERIES: BIG RIVERS) Identifying Catostomid Larvae Using Next Generation Sequencing (NGS) to Better Understand Reproduction Within Large River Systems
AUTHORS: Kellie N. Hanser, Cassi Moody-Carpenter, Jordan Pesik – Eastern Illinois University; Dan Roth, Indiana Department of Natural Resources; Aaron Schrey, Gerogia Southern University-Armstrong Campus; Anthony Porreca, Kaskaskia Biological Station: Illinois Natural History Survey; Robert E. Colombo, Eastern Illinois University

ABSTRACT: Catostomidae, the third largest freshwater fish family, comprises a high percentage of fish biomass in river systems throughout North America. Despite their presence, there is little information on the reproductive life history for this family in large, midwestern rivers and their tributaries. To address this, we sampled larval fish in three tributaries of both the Illinois River and Wabash River in conjunction with environmental data collected on factors thought to be important for reproduction. Between 2016 and 2017, we collected 130 and 2626 catostomid larvae from the Illinois and Wabash River tributaries, respectively. Due to the morphological difficulty of identifying catostomid larvae past family taxonomic level, Next Generation Sequencing (NGS) was used to identify catostomid larvae to either genus or species. Results of larvae identification are still pending due to processing time. We expect Wabash River tributaries to have a higher abundance of Moxostoma(Redhorse) while the Illinois River tributaries will have a higher abundance in Ictiobus(Buffalo) due to differences in connectivity between the systems. Future research will examine the relationship between larval and adult catostomid abundance in the Illinois and Wabash River systems.   

Tuesday January 29, 2019 3:20pm - 3:40pm EST

3:40pm EST

(FISHERIES: BIG RIVERS) Age-0 Daily Growth Estimation of Commercially Exploited Channel Catfish in a Free-Flowing Midwestern River
AUTHORS: K.B. Wood, Cassi J. Moody-Carpenter, Robert E. Colombo – Eastern Illinois University

ABSTRACT: Highly variable discharge experienced by the lower Wabash River due to a more natural hydrology pattern overlaps with Channel Catfish (Ictalurus punctatus) reproduction period; this leads to variable conditions for age-0 fish to develop upon hatching. There ubiquitous pattern of cryptic information published about age-0 Channel Catfish, and any insight would be advantageous to multiple facets in Channel Catfish life history. While a male will spawn multiple times through the year, reproduction is dictated by the females, only becoming gravid once annually; females becoming gravid at separate times leads to there being non-coeval cohorts. In their larval stages, endogenous feeding promotes a constant growth rate, but switching to exogenous feeding and entering the juvenile stages leads to growth dependent on the environmental conditions. We observed stable reproduction in varying conditions over four years of sampling (p > .05). Peak abundance in August signifies a peak in the aggregation of cohorts. Past surveys have shown there are at least five cohorts of age-0 Channel Catfish throughout the spawning season in the Wabash River; investigations into growth patterns of these cohorts by estimating daily growth from the otoliths can offer insight into which cohorts may best be utilizing their available resources. Variations in growth patterns could come from present conditions, normal seasonal variation, or a combination of both. Results from this study could aid in creating a recruitment index for Channel Catfish in this exploited lotic system. 

Tuesday January 29, 2019 3:40pm - 4:00pm EST

4:00pm EST

(FISHERIES: BIG RIVERS) Age, Growth, and Yield-Per-Recruit of Black Crappie (Pomoxis nigromaculatus) in Pools 4, 8, and 13 of the Upper Mississippi River
AUTHORS: Tyler Ham, Indiana Department of Natural Resources; Dr. Quinton Phelps, West Virginia University

ABSTRACT: Population dynamics are important to consider when managing recreational fisheries. Population dynamics interact with effects of harvest to create fluctuations that may need ameliorated through regulation. Black Crappie (Pomoxis nigromaculatus)are a popular sport fish in the United States that anglers spend time and money pursuing on a yearly basis. Despite their importance, limited information exists on Mississippi River Black Crappie. Therefore, the goal of this study was to evaluate the population dynamics of Black Crappie in Pools 4, 8, and 13 of the Upper Mississippi River. The potential for growth overfishing was evaluated through the use of yield-per-recruit modelsand based on historic harvest rates and habitat modifications within these pools. Overall, 201 crappie were collected from Pool 4, 215 from Pool 8, and 130 from Pool 13 during the summer and fall of 2016. All fish were weighed, measured, and aged via sagittal otoliths. We simulated exploitation for six different length limits. We found that growth overfishing did not occur until exploitation rates exceeded 50% for fish less than or equal to 152 mm. These results suggest that Black Crappie populations in Pools 4, 8, and 13 are not at risk of growth overfishing, but continued monitoring is warranted due to the potential influence of extrinsic factors like climate change, eutrophication, and vegetation shifts.

Tuesday January 29, 2019 4:00pm - 4:20pm EST

4:20pm EST

(CANCELLED) (FISHERIES: BIG RIVERS) Paddlefish Exploitation and Movements Within the Mississippi River Basin
AUTHORS: Thomas Devine, Southeast Missouri State University; Sara Tripp, Missouri Department of Conservation; Nick Kramer, Kansas Fish & Wildlife Division

ABSTRACT: The American Paddlefish Polyodon spathula is an ancient species native to the Mississippi River and its larger tributaries. This species exhibits a unique combination of morphology and life history characteristics that leaves them vulnerable to negative impacts caused by river modification and the potential for overexploitation. This has led to population declines in portions of the historic range. Concern regarding unknown exploitation rates from sport and commercial fisheries has increased in recent decades and the Convention on International Trade of Endangered Species is now seeking information from state agencies regarding the sustainability of commercially harvested Paddlefish Populations. The Missouri Department of Conservation is addressing this through the implementation of a five year study on exploitation of Paddlefish in the Mississippi River. The first two years of this project found that minimal exploitation of Paddlefish along Missouri’s eastern border with an exploitation estimate of 4.01% (SE=0.02). The third and fourth year of this study we focused on tagging more paddlefish with jaw bands and transmitters to further evaluate current exploitation rate and better understand paddlefish movement patterns in the Mississippi River and its tributaries. We found that paddlefish are moving great distances and crossed many regulatory boundaries. Despite low exploitation rate estimates, when information from this study is combined with previous work, a precautionary adjustment of regulations is advised to protect Paddlefish through maturation and ensure sustainability. In addition, Paddlefish regulations should be assessed across the entire Mississippi watershed, as regulations differ within and between regulatory and state boundaries. A combination of population monitoring (e.g. exploitation and population dynamics) and telemetry efforts have the potential to help inform future basin wide management approaches.

Tuesday January 29, 2019 4:20pm - 4:40pm EST

4:40pm EST

(FISHERIES: BIG RIVERS) Long-term Shovelnose Sturgeon Recapture and Population Data and Implications for Management Actions
AUTHORS: Craig Jansen, Indiana Department of Natural Resources

ABSTRACT: The Wabash River sustains one of the few remaining commercial fisheries for Shovelnose Sturgeon (SNSG). Since a statewide minimum length limit (25 inches eye-to-fork) was implemented in 2007, there have been concerns that regulations are not offering sufficient protection for the population, specifically mature females. SNSG have been sampled throughout the Wabash River from 2005 to 2018. General demographic data was collected from all fish (length, weight, pectoral fin ray) and sex was identified if possible. All fish were tagged with a unique Floy tag. Linear regressions were used to identify trends in annual mean length of the entire sampled population and confirmed mature females. Average length of SNSG exhibited a general decreasing trend, peaking at 27.1 inches in 2007 and decreasing to 25.5 by 2017. The mean size of confirmed females decreased more dramatically from 28.4 inches in 2009 to 25.9 inches in 2018. Days at-large was calculated for recaptured fish, and individuals were grouped based on size at original tagging. Recaptured fish exhibited a strong homing behavior as most were captured less than 5 miles from the original tagging site. Several SNSG have been recaptured 10 to 13 years after tagging and exhibit little to no growth. Once maturity is reached growth becomes negligible, and individual fish do not follow a typical population growth curve. Results suggest regulations have allowed overharvest, and more specifically, the removal of fast-growing and large females from the population. Based on the unique life-history and lucrative market value of SNSG, traditional fisheries management tools, such as minimum length limits, may not adequately protect the population from overharvest. More restrictive regulations are needed to ensure the Wabash River SNSG do not collapse like other sturgeon populations throughout the world.

Tuesday January 29, 2019 4:40pm - 5:00pm EST
Wednesday, January 30

10:20am EST

(FISHERIES: INVASIVE SPECIES 3) Silver Carp Population Genetics from Tributaries of a Large Midwestern River
AUTHORS: Samuel Schaick, Eastern Illinois University; Cassi Moody-Carpenter, Eastern Illinois University; Aaron Schrey, Georgia Southern University; Katie Miller, Georgia Southern University; David Wahl, Illinois Natural History Survey; Robert Colombo, Eastern Illinois University

ABSTRACT: Silver Carp are a non-native fish species that have deleterious effects on the ecosystems they invade. Because of their destructive nature, fisheries managers devote substantial time and effort to limit the spread of these fishes. Better understanding patterns of Silver Carp reproduction and dispersal can help to better manage this invader. To determine spawning locations, we used drift nets and larval push nets in three tributaries the Wabash River to capture larval Hypophthalmichthys (Silver and Bighead Carp) in 2016 and 2017. Further, we used microsatellite loci to determine if genetic differences existed between larval Hypophthalmichthys in our three study tributaries. In total, 1,246 Hypophthalmichthys were collected from three tributaries, with the Little Wabash River and Embarras River producing roughly 83% and 16% of larvae. Having large enough sample sizes at two sites on the Little Wabash River and one site on the Embarras River, we performed genetic analyses and found all three sites had high levels of genetic diversity. Additionally, we found minimal inbreeding or outbreeding present. The middle Little Wabash and lower Embarras River samples were found to be genetically different. We expect this research to improve our understanding of Asian carp reproduction and help fisheries professionals to better mediate their spread.

Wednesday January 30, 2019 10:20am - 10:40am EST

10:40am EST

(FISHERIES: INVASIVE SPECIES 3) Genomic and In Vitro Changes of VHSv-IVb over the past Decade in the Great Lakes
AUTHORS: Megan Niner, University of Toledo; Dr. Carol Stepien, NOAA Pacific Marine Environmental Lab; Dr. Doug Leaman, Wright State University

ABSTRACT: The viral hemorrhagic septicemia virus (VHSv) is a fish virus responsible for occasional fish kills in the Laurentian Great Lakes in the last fifteen years. Substrain IVb is a recently emerged pathogen with an unusually large host range of over 30 species of fish, both of native and non-native status. With new outbreaks once again occurring, more insight into the evolutionary trends of this fish pathogen could help predict future trends. This study provides a unique examination of a wildlife pathogen in a natural setting. We sequenced the full genome of multiple VHSv-IVb isolates collected in the fifteen years following its emergence to examine evolutionary trends. For these 30 isolates, we compare and contrast differences in nucleotides, amino acids, mutation sites, and the number of transvisions and transversions to elucidate possible patterns across time. To understand how observed changes in sequences may affect the course of infection, further testing of three selected full genomes from Lake Erie were used in a variety of cell culture studies. Our selected isolates were haplotypes “v” (H31, round goby, 2015), “w” (B09, gizzard shad, 2016), and “w4” (G61, smallmouth bass, 2016). Cell experiments included testing for differences in pathogenicity from the original isolate haplotype “a” (MI03GL, 2003), examining cytopathogenicity, virus production, and immune response stimulation. All three new isolates appeared to behave similarly to “a” despite being recovered more than a decade later.

Wednesday January 30, 2019 10:40am - 11:00am EST

11:00am EST

(FISHERIES: INVASIVE SPECIES 3) Control of Red Swamp Crayfish (Procambarus clarkii) in Chicago Region to Reduce Risk of Spread Across Great Lakes Basin
AUTHORS: Erin O'Shaughnessey, Rachel Egly, Reuben Keller – Loyola University Chicago

ABSTRACT: Crayfish are the largest freshwater invertebrate and pose a serious threat to the ecosystems in which they invade. They have been shown to decrease macroinvertebrate density and diversity, displace native crayfish, and alter fish communities. We have identified a reproducing population of red swamp crayfish (Procambarusclarkii)in the Chicago Area Waterways System (CAWS). This species has been introduced in Lake Erie, small ponds in Wisconsin, and streams in Michigan, as well as in Africa, Asia, and Europe. Due to the proximity of the CAWS to Lake Michigan and undisturbed streams with native crayfish populations, P. clarkii is potentially able to spread into more areas. During summer 2018, we began a removal effort ofP. clarkii in the North Branch of the Chicago River and in the North Shore Channel. Additionally, we tested for the optimal number of nights for traps to be left in the water to achieve the highest catch rate and used mark and recapture methods to attempt to test the distance that crayfish travel in this system. In the North Branch of the Chicago River, we have recaptured 51 crayfish, traveling an average distance of 2.53 meters per night. In the North Shore Channel, we have recaptured 11 crayfish, traveling an average distance of 6.41 meters per night. Previous sampling indicated that the average CPUE (catch per unit effort) in this system was 0.843. The current CPUE of P. clarkii in our removal study area is 0.453. 

Wednesday January 30, 2019 11:00am - 11:20am EST

11:20am EST

(CANCELLED) (FISHERIES: INVASIVE SPECIES 3) Implementing a Monitoring Program for Invasive Benthic Macroinvertebrates in Lake Superior
AUTHORS: Jason E. Ross, Mike Seider, Jared Myers – U.S. Fish and Wildlife Service

ABSTRACT: Traditional Aquatic Invasive Species (AIS) monitoring and early detection programs in the Great Lakes target fish use multiple gears to maximize the number of species captured.  The measures of success has been measured by the proportion of the total expected species pool captured in a given period.  This same approach has been applied to aquatic macroinvertebrates, but the measures of success have not been reaching the same expectations as fish.  Aquatic macroinvertebrates are smaller, more numerous, less mobile, and far less studied than fish and, therefore, should not have the same expectations.  In this study, we evaluated our samples collected from 2014 to 2016 by taxonomic groups and gear types to determine whether sample designs were capturing taxonomic groups containing species at risk of invading Lake Superior (amphipods, bivalves, gastropods, and mysids).  We found that our gears (sweep nets, petite ponar, Hester-Dendy, Zebra Mussel Samplers) were not capturing taxonomic groups of interest with much success.  Missing taxon groups of interest in collections can greatly change accumulation curves and deprecate the success of a program.  During 2017, we added rock bags to target amphipods; Neuston nets, vertical plankton tows, and sweep nets at night to target mysids; and did not scrape the Hester-Dendy and Zebra Mussel Samplers to allow bivalves to mature for identification.  The modifications allowed us to capture two additional species of amphipods, successfully identified Zebra Mussels on samplers, and discovered Bloody Red Shrimp in the St. Louis River Estuary.  By changing the focus of the aquatic macroinvertebrates monitoring from “finding all of the species” to “targeting taxon of interest”, the measures of successes have changed to reasonable expectations while improving the monitoring of invasive species.

Wednesday January 30, 2019 11:20am - 11:40am EST

11:40am EST

(FISHERIES: INVASIVE SPECIES 3) Rapid Expansion of Banded Killifish Fundulus diaphanus Across Northern Illinois: Dramatic Recovery or Invasive Species?
AUTHORS: Jeremy S. Tiemann, Illinois Natural History Survey; Philip W. Willink, Field Museum; Tristan A. Widloe, Victor J. Santucci, Jr., Daniel Makauskas – Illinois Department of Natural Resources; Samantha D. Hertel, Loyola University Chicago; James T. Lamer, Western Illinois University; Joshua L. Sherwood, Illinois Natural History Survey

ABSTRACT: The distribution of the Illinois state-threatened Banded Killifish Fundulus diaphanus remained largely unchanged in Illinois from 1880 to 2000, being restricted mainly to the northeastern corner of the state. One population has remained stable in the glacial lakes region along the southeastern Wisconsin – northeastern Illinois border. Individuals from this population are identified as the Western Banded Killifish F. d. menona. Starting in 2001, a second population began to spread and become more common along the Lake Michigan shoreline. From there, they expanded through the Chicago Area Waterway System, into the lower Des Plaines River, and eventually into the Illinois River. Historical museum specimens from this area are identified as the Western subspecies, but recent specimens are identified as hybrids between the Western subspecies and the non-native Eastern subspecies F. d. diaphanus. A third population appeared in the Mississippi River near the mouth of the Rock River in 2009, and has spread from there, including downstream to the St. Louis area. These individuals are identified as the Western subspecies. The rapid expansion of Banded Killifish from Lake Michigan into the Illinois River appears to be an invasion of the Eastern subspecies and the subsequent hybridization with the native Western subspecies. It is unknown where the Banded Killifish in the Mississippi River came from, but they might have originated from populations 160+ kilometers upstream or through human introductions. As the Illinois River and Mississippi River populations continue to expand their ranges, their ecological impacts are unknown at this time. Future work includes a genetic analysis to help determine how the non-native Eastern subspecies invaded the Midwest from the Atlantic Slope.

Wednesday January 30, 2019 11:40am - 12:00pm EST

Filter sessions
Apply filters to sessions.
  • Main Agenda Item
  • Poster
  • S01: Using Standardized Assessments to Evaluate Harvest Regulations: Advancing Science-Based Fisheries Management
  • S02: Eastern Massasauga Conservation - Management - Recovery
  • S03: Application of environmental DNA-based tools for aquatic invasive species monitoring and management
  • S04: Great Lakes Trophic Structure: Innovations and ongoing studies of predatory fishes
  • S05: Migratory wildlife collisions with manmade structures: monitoring - prevention - patterns from collision data
  • S06: Considering New Paradigms in the Management of Beaver - Trout - Riparian Habitats
  • S07: Use of Acoustic Telemetry to Inform Fisheries Management Across Midwestern US and Canada
  • S08: Science in service to wetlands conservation and wildlife management in the lower Great Lakes region: history - status - state of the art
  • S09: Carbon Dioxide As An Aquatic Resource Management Tool
  • S10: The Ohio Biodiversity Conservation Partnership: An Innovative University-State Agency Partnership for Conservation in Ohio
  • S11: Dreissenid Mussels: Advancements in control - detection - management - biology
  • S12: Reading the aquatic landscape and connecting restoration design
  • S13: Sea Grant role in communicating needs to inform research and conservation
  • S14: Bridging the Gap between Fish and Wildlife: Discussions on Multi-Species Interactions and Ecosystem Stability
  • S15: Collaborating with community members: the human side of fish and wildlife management and research
  • S16: Agriculture and Wildlife Coexistence in the Midwest United States
  • Student Event
  • T01: Fisheries: Great Lakes I
  • T02: Wildlife: Urban-Wildlife Conflict
  • T03: Fisheries: Behavior & Physiology
  • T04: Wildlife: Wetland Conservation
  • T05: Lightning Talk Session: Fisheries
  • T06: Human Dimensions: Fisheries I
  • T07: Fisheries: Rivers & Streams
  • T08: Wildlife: Waterfowl
  • T09: Human Dimensions: Wildlife
  • T10: Fisheries: Invasive Species I
  • T11: Fisheries: Fish Conservation
  • T12: Wildlife: Cervids
  • T13: Fisheries: Habitat
  • T14: Fisheries: Great Lakes II
  • T15: Fisheries: Lakes & Reservoirs
  • T16: Fisheries: Invertebrates
  • T17: Wildlife: Mammals
  • T18: Human Dimensions: Policy & Engagement
  • T19: Fisheries: Early Life History
  • T20: Wildlife: Upland I
  • T21: Fisheries: Invasive Species II
  • T22: Wildlife: Turtles
  • T23: Fisheries: Big Rivers
  • T24: Wildlife: Upland II
  • T25: Fisheries: Techniques
  • T26: Fisheries: Invasive Species III
  • T27: Wildlife: Avian
  • T28: Lightning Talk Session: Wildlife
  • T29: Human Dimensions: Fisheries II
  • Workshop