Welcome to the interactive web schedule for the 2019 Midwest Fish & Wildlife Conference! Please note, this event has passed. To return to the main Conference website, go to: www.midwestfw.org.

For tips on navigating this schedule, click HELPFUL INFO below.

CONFERENCE SCHEDULE UPDATES & CHANGES: As a result of the prolonged government shutdown, we experienced a number of cancellations and changes to the schedule. Cancellations and changes are listed here (as of January 26, 2019). 

Sign up or log in to bookmark your favorites and sync them to your phone or calendar.

T24: Wildlife: Upland II [clear filter]
Tuesday, January 29

3:20pm EST

(WILDLIFE: UPLAND 2) Does Land Management Have Detectable Effects on Species Richness?
AUTHORS: Jay Vecchiet, Richard B. King – Northern Illinois University

ABSTRACT: Agencies across the United States rely on data driven management practices. Whether or not those practices are successful can be ambiguous because variables other than management also shape population and community responses. Here, we test whether the effects of preserve size, preserve land cover, surrounding land cover, habitat quality, and management history have a detectable effect on species richness. We focus on amphibians and reptiles in grassland-dominated preserves in northern Illinois.  Species lists were compiled for 15 preserves ranging in size from 7 ha to 1460 ha. Habitat quality and land cover (open water, wetland, grassland, wooded, agriculture) of all preserves were analyzed using ArcMap 10.4.1. Preserves were also classified by age, prior land use, and intensity of management actions (seeding, prescribed fire, chemical and mechanical controls). Across preserves, a total of 31 amphibian and reptile species were documented, including 8 frogs and toads, 2 salamanders, 2 lizards, 6 turtles, and 13 snakes. Of these, 7 are considered Endangered, Threatened, or Species in Greatest Conservation Need in Illinois. As management is carried out, there are obvious positive effects on the environment (soil composition, plant communities, water quality), but demonstrating a positive effect on organisms with cryptic life histories, such as amphibians and reptiles, is challenging.

Tuesday January 29, 2019 3:20pm - 3:40pm EST

3:40pm EST

(WILDLIFE: UPLAND 2) Effects of Field and Landscape-scale Habitat on Ring-necked Pheasant Demography
AUTHORS: Tim Lyons, University of Nebraska-Lincoln; T.J. Benson, Illinois Natural History Survey; Wade Louis, Illinois Department of Natural Resources; Mike Ward, University of Illinois at Urbana-Champaign; Richard Warner, National Great Rivers Research & Education Center

ABSTRACT: In agriculturally dominated landscapes, the habitat provided by public and private lands is critical for the conservation and management for non-game as well as game species, such as ring-necked pheasants. Management of these areas to increase pheasant populations has focused on increasing field size, the amount of grassland cover in the landscape, or managing vegetation composition within fields, to improve success during the nesting or brood-rearing stages, or the survival of breeding adults. How these actions will impact overall population growth or which stages or habitat features should be prioritized for management is not always clear. We studied how habitat conditions at the field-and landscape-scale influenced the demography of ring-necked pheasants on public and private grasslands in Illinois. Between 2013-2016, we used radio telemetry to track > 200 ring-necked pheasants and quantified the relationship between habitat features at multiple spatial scales, nest success, chick survival, and adult survival. We then used a simulation study to understand how changes to habitat features important to a particular stage ultimately affected population growth. We also examined how predator identity influenced the relationship between adult survival and habitat conditions. We found that several habitat features had contrasting effects among multiple stages and ultimately restricted population growth when management focused on maximizing performance during one stage. Our results also indicate that raptors may be a more important predator of pheasants than is generally recognized, but the risk of predation can be reduced by the management of vegetation within fields. Collectively our work highlights the importance of full life-cycle studies of demography for the effective management of wildlife and suggests that smaller fields, often overlooked in traditional conservation schemes, can play a role in pheasant management when coupled with appropriate management of vegetation within fields.

Tuesday January 29, 2019 3:40pm - 4:00pm EST

4:00pm EST

(WILDLIFE: UPLAND 2) Eastern Wild Turkey Distribution and Patch Occupancy Across Northern Wisconsin
AUTHORS: Chris Pollentier, Wisconsin Department of Natural Resources; Mike Hardy, University of Wisconsin-Madison; Scott Lutz, University of Wisconsin-Madison; Scott Hull, Wisconsin Department of Natural Resources

ABSTRACT: Eastern wild turkeys (Meleagris gallopavo silvestris) were successfully reintroduced in Wisconsin during the mid-1970s and populations have since expanded beyond their ancestral range throughout the state. Abundance has generally been considered greatest in areas with highly diverse landscapes that include upland woodlands interspersed with agriculture and other open-herbaceous land cover. However, many areas across far northern Wisconsin are comprised of landscapes where the forested area represents > 70% of the land cover. While much research has been focused on areas where populations are generally highest, study of wild turkeys across the far northern reaches of their range in the Upper Midwest and northern Wisconsin has been limited. To better understand wild turkey distribution and habitat relationships across northern Wisconsin, we conducted gobbling call-count surveys along 157 routes from 2013–2017 and instituted a multiseason correlated replicate occupancy modeling approach to link landscape characteristics to patch occupancy. Probability of occupancy was best related to a quadratic function of percentage of open cover (ß = -4.10, SE = 1.07), with probability of occupancy peaking in routes with 30–40% open cover. Probability of colonization was positively associated with the percentage of available agriculture planted in corn (ß = 1.14, SE = 0.42), and also showed a weak negative association with the amount of snow cover (ß = -1.13, SE = 0.62). Our results suggest that even in landscapes where forest cover is pervasive, wild turkeys benefit from the availability of open-herbaceous cover. In addition, corn-crop agriculture serves as an important food resource for wild turkey populations across heavily-forested northern Wisconsin landscapes and influences the probability of colonization into previously unoccupied areas. A better understanding of the distribution of wild turkeys across their northern range will provide much needed information to help guide contemporary management strategies in a post-restoration era.

Tuesday January 29, 2019 4:00pm - 4:20pm EST