Loading…
Welcome to the interactive web schedule for the 2019 Midwest Fish & Wildlife Conference! Please note, this event has passed. To return to the main Conference website, go to: www.midwestfw.org.

For tips on navigating this schedule, click HELPFUL INFO below.

CONFERENCE SCHEDULE UPDATES & CHANGES: As a result of the prolonged government shutdown, we experienced a number of cancellations and changes to the schedule. Cancellations and changes are listed here (as of January 26, 2019). 
Mammal [clear filter]
Monday, January 28
 

10:40am EST

(FISHERIES: LIGHTNING TALK) Influence of Mink Predation on Brown Trout Survival and Size-Structure in Rapid Creek, South Dakota
AUTHORS: Austin G. Galinat, South Dakota State University; Steven R. Chipps, USGS South Dakota Cooperative Fish and Wildlife Unit ; Jonathan A. Jenks, South Dakota State University

ABSTRACT: In the early 2000’s, annual population surveys indicated that abundance of adult brown trout (Salmo trutta; >200 mm) in Rapid Creek, South Dakota had declined by approximately 70% and currently, the factors influencing survival are poorly understood. Recent studies show that growth and condition of brown trout in Rapid Creek are high compared to other Black Hills populations and diet analysis shows that food availability is an unlikely source of mortality. However, a recent study discovered that predation by mink (Mustela vison) accounted for 32% of brown trout mortality in Rapid Creek. Limited refuge habitat combined with high water clarity in Rapid Creek may enhance capture and foraging success by mink on adult trout. Moreover, the lack of stationary ice cover in tail water reaches, like that of our study area, has been linked to increased predation on trout by predators such as mink. Three experimental sites along Rapid Creek have been selected: (1) in-stream habitat improvement, (2) mink removal, and (3) control. Eight fish from each section were surgically implanted with radio transmitters and tracked for six months. Mortality has been observed at all study sites. 50% of predation in the habitat improvement site (n=4) and 25% of predation in the control site (n=2) is attributed to mink. 25% of predation in the mink removal site (n=2) is attributed to avian predators. Currently, another six month fish tracking period is underway. Survival estimates will be assessed between the three fish populations using mark-recapture survey techniques. Additionally, mink are being captured, implanted with radio transmitters, and tracked to determine movement and home ranges. Data gathered in this study will provide insight into the effectiveness of management techniques such as instream habitat improvements and predator block management on trout populations.

Monday January 28, 2019 10:40am - 10:50am EST
VETERANS MEETING ROOM A/B

2:20pm EST

(HUMAN DIMENSIONS: WILDLIFE) University Students and Bears: Understanding Attitudes Among Future Stakeholders
AUTHORS: Haley Netherton, Mike Rader, Shawn Crimmins, Brenda Lackey, Cady Sartini – University of Wisconsin-Stevens Point

ABSTRACT: Increasing global bear populations and human-bear conflicts have made it more imperative to understand public attitudes towards bears and management interventions. Management methods vary in effectiveness and public support, further complicating the management of bears and other large carnivores. Without proper understanding of public attitudes towards bears and specific management actions, conflict can ensue between stakeholders and managers. To address this need, we conducted a survey of undergraduate and graduate students at the University of Wisconsin-Stevens Point (UWSP), as they will become the next stakeholders and policymakers. The objective of our study was to evaluate university student attitudes towards bears and their management and determine the associated factors, including personal experience with bears, socio-cultural influences, and stakeholder group membership. UWSP students tend to favor education and relocation as management tools, with education creating the least conflict. Destruction of the bear is more favorable as conflict escalates, but remains fairly controversial. Our results suggest that college of study and personal experience may be correlated with attitudes towards management interventions. Significant differences in students grouped by attitude towards bears were found for multiple management actions across several encounter situations. Students in the positive attitude group significantly differed from students in the mixed/negative attitude group in their responses towards monitoring the situation, providing education for locals, and destruction of the bear in all five contexts of increasing conflict in a neighborhood setting (all p < 0.001). The effect sizes for these differences suggest minimal to substantial relationships between respondents’ general attitude towards bears and their attitude towards a management action in a specific encounter context (d = 0.304-0.894). The results of this study will contribute to the greater body of literature that can be used to inform the best management options for bears and other large carnivores in a particular socio-demographic context. 

Monday January 28, 2019 2:20pm - 2:40pm EST
CENTER STREET ROOM B

3:20pm EST

(WILDLIFE: CERVIDS) Causes of Mortality in Minnesota’s Declining Moose Population
AUTHORS: Michelle Carstensen, Erik C. Hildebrand, Dawn Plattner, Margaret Dexter – Minnesota Department of Natural Resources; Arno Wünschmann, Anibal Armien – University of Minnesota-Veterinary Diagnostic Laboratory

ABSTRACT: Minnesota’s moose (Alces alces) are dying at rates much higher than elsewhere in North America. Moose have been nearly extirpated from the northwestern part of the state and aerial surveys indicate the northeastern population has declined 55% over the past decade. In 2013, a new study began to determine cause-specific mortality of adult moose in northeastern Minnesota by using GPS-satellite collars to get rapid notification of mortality events and recover carcasses within 24 hours of death. A total of 173 moose were collared over 3 years with annual non-hunting mortality rates of 19%, 12%, 15%, 13% and 14% in 2013-2017, respectively, and an overall mean of 14.4%. In total, 57 moose have died from non-hunting sources of mortality and 3 moose were legally harvested. Response times from mortality notification to arrival at the carcass were within 24 hours for 65% of death events. Most causes of mortality were health-related (65%), which included parasites (30%; e.g., winter ticks, brainworm, and liver flukes), bacterial infections (20%), accidents (3%), calving (2%) and other undetermined health issues (10%).The remainder was wolf-related (30%), with predisposing health conditions identified in nearly half of these moose.  Legal harvest accounted for 5% of moose deaths. During the same time period, we also necropsied anecdotal moose deaths (n=91) across northern Minnesota, which included vehicle or train collisions, sick, and found dead animals. Parelaphostrongylus tenuis was confirmed in 42% of these cases, which is nearly twice the rate of detection of this parasite as in the collared moose studied during the same time period. 

Monday January 28, 2019 3:20pm - 3:40pm EST
CENTER STREET ROOM D

3:40pm EST

(SYMPOSIA-05) “Big Data” Approach to Understanding Wildlife Collision Risk at Wind Farms
AUTHORS: Ryan Butryn, Taber Allison – American Wind Wildlife Institute

ABSTRACT: The American Wind Wildlife Institute (AWWI) has developed a database of post-construction fatality monitoring data containing hundreds of studies, many of which have been unavailable for analysis.  We present the results from our first analysis of more than 200 studies at 140 projects from across the U.S.  The size of our data set enables us to evaluate fatality rates and incident data on a biologically relevant regional scale (e.g., avian migration flyways, bird conservation regions). Bird and bat fatalities have been observed at almost all wind facilities; however, the species composition and number of fatalities varies greatly among these facilities. Our results show substantial differences in regional variation in bird and bat fatality estimates indicating different underlying patterns affecting collision risk in these two groups.  We also found bird and bat species assemblages detected by post construction surveys also varied substantially by region.  We will provide examples of how increased data availability provided by AWWI can help reduce uncertainties in risk and impact assessment and inform focused and effective fatality reduction measures.  

Monday January 28, 2019 3:40pm - 4:00pm EST
VETERANS MEETING ROOM C/D

3:40pm EST

(WILDLIFE: CERVIDS) Proximity to Established Populations Explains Moose (Alces alces) Occupancy in Northern Wisconsin
AUTHORS: Lucas O. Olson, Timothy R. Van Deelen, John D. J. Clare – University of Wisconsin-Madison; Maximilian L. Allen, Illinois Natural History Survey

ABSTRACT: Wildlife conservation and management depends on understanding patterns and changes in the populations and distributions. Moose (Alces alces) sub-populations are alternately declining and increasing in abundance across their circumpolar distribution. Within regional populations a similar variable pattern sometimes exists, such as in the upper Midwest region of the United States where sub-populations are declining in Minnesota but steady or increasing in Michigan. Although abundant before European settlement, little is known about the current state of moose in Wisconsin. We examined citizen science observations of moose collected by the Wisconsin Department of Natural Resources over 25 years to determine the drivers and trends of moose distribution in Wisconsin. Because opportunistically collected citizen-science data may be unreliable for abundance estimates, we used an occupancy framework to understand how variables affect county-level detection and occupancy of moose. We found that detection was driven by area of Intermix Wildland Urban Interface and road density, and occupancy was driven primarily by proximity to Minnesota and Michigan, and appears to have been stable over the previous 25 years. This study offers insight for understanding moose populations on the southern fringe of their circumpolar distribution, and a foundation for understanding the moose population in Wisconsin.

Monday January 28, 2019 3:40pm - 4:00pm EST
CENTER STREET ROOM D

4:00pm EST

(CANCELLED) (WILDLIFE: CERVIDS) Evaluation of an Ek Detection Probability Model in the Black Hills, South Dakota
AUTHORS: Christopher Jacques, Western Illinois University; Evan Phillips, Colorado Parks and Wildlife; Angela Jarding, National Park Service; Susan Rupp, Enviroscapes Ecological Consulting, LLC; Robert Klaver, U.S. Geological Survey; Chadwick Lehman, South Dakota Game, Fish and Parks; Jonathan Jenks, South Dakota State University

ABSTRACT: Since 1993, elk (Cervus canadensis nelsoni) abundance in the Black Hills of South Dakota has been estimated using a detection probability model previously developed in Idaho, though are likely negatively biased because of a failure to account for visibility biases under local conditions. To correct for this bias, we evaluated the current detection probability across the Black Hills during January and February 2009-2011 using radiocollared elk. We used logistic regression to evaluate topographic features, habitat characteristics, and group characteristics relative to their influence on detectability of elk. Elk detection probability increased with less vegetation cover (%), increased group size, and snow cover (%); overall detection probability was 0.60 (95% CI = 0.52-0.68) with 91 of 152 elk groups detected. Predictive capability of the selected model was excellent (ROC = 0.807), and prediction accuracy ranged from 70.2% to 73.7%. Cross-validation of the selected model with other population estimation methods resulted in comparable estimates. Application of our model should be applied cautiously if characteristics of the area (e.g., vegetation cover > 50%, snow cover > 90%, group sizes > 16 elk) differ notably from the range of variability in these factors under which the model was developed.

Monday January 28, 2019 4:00pm - 4:20pm EST
CENTER STREET ROOM D

4:20pm EST

(SYMPOSIA-06) Effect of Beaver on Brook Trout Habitat in North Shore Lake Superior Streams
AUTHORS: Dr. Andrew Hafs, Kathryn Renik – Bemidji State University

ABSTRACT: In Minnesota, Beaver Castor canadensis are considered to have an overall negative affect on native Brook Trout Salvelinus fontinalis. Brook trout provide a valued and productive sport fishery to the North Shore streams of Lake Superior and since revival of the Beaver population from past trapping and timber harvest, a need emerges to examine the complex ecological relationship where the two taxa interact. Suitable Brook Trout habitat is characterized by cold, spring-fed water with silt-free rocky substrate and abundant cover, all of which Beaver may directly, or indirectly, affect. Data collection occurred on 80 (200 m) stream sections and 22 beaver ponds spanning the North Shore during summers 2017 and 2018. A habitat suitability index (HSI) model was employed, and through interpolation in geographic information systems (GIS), maps depicting Brook Trout habitat of sampled stream sections were produced. The average HSI and suitable area (m<sup>2</sup>/100 m<sup>2</sup>) of each sampled reach were compared to Beaver related activity, including reach slope, distance to nearest Beaver pond, and number of dams upstream of sampled sites. Classification regression trees were used to identify significant thresholds in which Beaver activity influenced the amount or quality of Brook Trout habitat. Preliminary results from 2017 data indicated that a greater area of suitable Brook Trout habitat in North Shore streams was achieved when the maximum tree line width of the nearest upstream Beaver pond was = 71.23 m.  Anticipated results from 2018 will be presented contingent on completion of data analysis. Since the effect of Beaver on Brook Trout varies regionally, this study will provide a simple decision-making flow chart to aid in the development of management strategies pertaining to these two species in North Shore, Lake Superior streams.

Monday January 28, 2019 4:20pm - 4:40pm EST
VETERANS MEETING ROOM A/B

4:40pm EST

(WILDLIFE: CERVIDS) Understanding Relationships Between Deer Demographics, Deer Health and Forest Vegetation Through Partnerships with Wisconsin Hunters
AUTHORS: Amanda McGraw, Daniel Storm – Wisconsin Department of Natural Resources

ABSTRACT: Deer health reflects habitat quality, climate, and interspecific competition. Deer health, in turn, is reflected in body condition, including body weight and fat reserves. To relate deer health to habitat quality, climate, deer density levels, the Wisconsin Department of Natural Resources began a collaborative project with landowners enrolled in the state’s Deer Management Assistance Program (DMAP) to collect data on harvested deer and available forage on private properties. DMAP cooperators were recruited as to participate as citizen scientists through outreach including public presentations and email announcements during 2017 and 2018. Several training tools were developed to facilitate quality data collection by cooperators. Data collection kits containing all necessary supplies was provided to cooperators. In 2017 we received data from 57 DMAP cooperators for 280 deer. Cooperators measured several morphological characteristics indicative of body condition and overall health, such as antler dimensions and carcass weight. Cooperators extracted a tooth for aging via cementum annuli and photographed hearts for organ fat estimation. Age explained 66% of variance for female deer carcass weight (R<sup>2</sup> = 0.64, F<sub>1,6</sub> = 20.61, p < 0.001) and 81.7% of variance for male carcass weight (R<sup>2</sup> = 0.81 F<sub>1,6</sub> = 64.19, p < 0.001). Less variation in antler width (Deviance = 0.57, R<sup>2</sup> = 0.56, F<sub>1,6</sub> = 13.39, p < 0.001) and number of antler points (Deviance = 0.55, R<sup>2</sup> = 0.53, F<sub>1,6</sub> = 12.45, p < 0.001) was explained by age for male deer. We are continuing to explore the potential effects of density, habitat, and weather on deer body condition and antler development. This study highlights methods developed to ensure quality data collection by citizen scientists, and feasibility of operating a citizen-science based research project at a state-wide scale. We also provide insights about how habitat quality on private lands impacts deer health and productivity.

Monday January 28, 2019 4:40pm - 5:00pm EST
CENTER STREET ROOM D
 
Tuesday, January 29
 

10:40am EST

(WILDLIFE: MAMMALS) Camera Trap Efficacy for Determining Mammal Occupancy in Northern Hardwood Forests, Michigan
AUTHORS: Melissa D. Starking, Michigan State University; Gary Roloff, Michigan State University; Michael Donovan, Michigan Department of Natural Resources

ABSTRACT: Northern hardwood forests cover > 2 million ha in Michigan and are managed for ecological and timber values. The mammal community of these forest systems provides important ecological and recreational functions. As part of a long-term study on forest regeneration techniques and wildlife interactions, we deployed an unbaited 25-camera grid (1 camera every 0.49 ha) across a 12 ha hardwood site in the Upper Peninsula, Michigan. We collected data from May 2017 through June 2018. We tagged photos to species and used standard photo verification processes. We documented a wide functional range of mammals, including small mammals (deer mice, flying squirrels), mesocarnivores (marten, fisher, bobcat, coyote), and larger herbivores (deer) and a carnivore (wolves). We quantified number of cameras needed to reliably detect white-tailed deer, snowshoe hare, black bear, and marten. We report on amount of sampling needed to represent detectable mammal species using relatively localized areas in managed northern hardwood forests in Michigan.

Tuesday January 29, 2019 10:40am - 11:00am EST
CENTER STREET ROOM D
 
Wednesday, January 30
 

10:20am EST

(CANCELLED) (SYMPOSIA-16) Agriculture and Wildlife Coexistence in the Midwest United States
AUTHORS: Gary J. Roloff, Department of Fisheries and Wildlife, Michigan State University

ABSTRACT: The Midwest region of the United States supports abundant wildlife and diverse agriculture, with both substantially contributing to regional and national economies and livelihoods. Recreation associated with wildlife has a positive economic impact, estimated to generate over $34 billion annually for 8 Midwestern States. The annual market value of crops and livestock exceed $76 billion. Wildlife often represents a cost to farmers through crop and livestock depredation and food safety risks, but some producers benefit through recreational leasing of their properties. State level wildlife damage data are limited and outdated, but suggests that agricultural losses in the Midwest are significant. Resources available to producers in the Midwest for integrated wildlife damage management (IWDM) vary greatly, but are generally underutilized or ineffectual, and in some cases simply nonexistent. Challenges include political and social barriers to managing valued wildlife species as pests, complex regulatory jurisdiction over wildlife damage control, lack of dedicated personnel assigned to wildlife damage response, and limited IWDM tools. Many IWDM tools do not scale to crop production contexts, provide only limited or temporary efficacy, or are not economically viable. The Agriculture and Wildlife Coexistence symposium will focus on updating our understanding of wildlife damage assessments, mitigation, and philosophies with a focus on wildlife-agriculture co-existence in the Midwest region.

Wednesday January 30, 2019 10:20am - 10:40am EST
CENTER STREET ROOM D

10:40am EST

(CANCELLED) (SYMPOSIA-16) Phase 2 Wildlife Management: Addressing the Impacts of Invasive and Overabundant Wildlife: The White-tailed Deer Continuum and Invasive Wild Pig Example
AUTHORS: Kurt VerCauteren, Amy Davis, Kim Pepin – National Wildlife Research Center, USDA/APHIS/Wildlife Services

ABSTRACT: Wildlife managers in many countries around the world are facing similar challenges, which include: a lack of means to address invasive species and locally overabundant native species issues particularly in the face of declining fiscal resources, reduced capacity to achieve management goals, and a need to garner public support in the wake of changing societal values and increasing human populations. Meeting these challenges requires building off the profession’s successes and developing new paradigms and strategies to curtail the negative impacts invasive and overabundant species are having on our natural and agricultural resources. Like our predecessors in conservation succeeded in developing our profession and initiating a movement that led to the recovery of many valued native species, now it is us who face a comparable albeit somewhat opposite mandate. Our charge is to curtail and reverse the further establishment and impacts of invasive and overabundant species. We must not fail, but with just existing methods and decision processes we cannot succeed. Using wild pigs as an example invasive species and white-tailed deer as a corollary locally overabundant native species, we begin to lay out why we believe we have entered a second herculean phase of our profession that is as crucial to the quality of our future as the initiation of conservation was a century ago.

Wednesday January 30, 2019 10:40am - 11:00am EST
CENTER STREET ROOM D

11:20am EST

(CANCELLED) (SYMPOSIA-16) Identifying and Managing Wildlife Damage to Forests
AUTHORS: Jimmy Taylor, USDA National Wildlife Research Center

ABSTRACT: Forests are integral components of the global climate, yet the material products that trees provide are essential to sustain human quality of life (e.g., paper, fuel, lumber, poles, fruit, etc.). Growing healthy forests requires years of planning, investment, and adaptive management. Wildlife impacts on regenerating forests following wildfire or harvesting can be extensive. Wildlife damage by ungulates, rodents, and rabbits during the first five years of tree growth greatly hinder reforestation efforts following wildfire or harvest, while foraging by other mammals such as bears, beavers, and porcupines damage mature trees after stands have gained significant economic value. The costs associated with silvicultural applications are highly variable as are the costs of preventing wildlife damage to trees. Furthermore the cumulative effects of combined management techniques are unknown in forestry management. Allowing wildlife damage can result in 1) decreased volume and revenue at harvest, or 2) extending harvest rotation lengths of stands, simultaneously extending long-term interest payments and decreasing net returns. We will describe methods to identify species-specific damage to trees and methods to reduce damage, including repellents, exclusion, and behavioral modification. We also will describe pros and cons of these methods. Applying appropriate techniques and improving cost-benefit analyses will provide forest managers with knowledge to refine forest management strategies.

Wednesday January 30, 2019 11:20am - 11:40am EST
CENTER STREET ROOM D
 


Filter sessions
Apply filters to sessions.
  • Main Agenda Item
  • PLENARY SESSION
  • Poster
  • S01: Using Standardized Assessments to Evaluate Harvest Regulations: Advancing Science-Based Fisheries Management
  • S02: Eastern Massasauga Conservation - Management - Recovery
  • S03: Application of environmental DNA-based tools for aquatic invasive species monitoring and management
  • S04: Great Lakes Trophic Structure: Innovations and ongoing studies of predatory fishes
  • S05: Migratory wildlife collisions with manmade structures: monitoring - prevention - patterns from collision data
  • S06: Considering New Paradigms in the Management of Beaver - Trout - Riparian Habitats
  • S07: Use of Acoustic Telemetry to Inform Fisheries Management Across Midwestern US and Canada
  • S08: Science in service to wetlands conservation and wildlife management in the lower Great Lakes region: history - status - state of the art
  • S09: Carbon Dioxide As An Aquatic Resource Management Tool
  • S10: The Ohio Biodiversity Conservation Partnership: An Innovative University-State Agency Partnership for Conservation in Ohio
  • S11: Dreissenid Mussels: Advancements in control - detection - management - biology
  • S12: Reading the aquatic landscape and connecting restoration design
  • S13: Sea Grant role in communicating needs to inform research and conservation
  • S14: Bridging the Gap between Fish and Wildlife: Discussions on Multi-Species Interactions and Ecosystem Stability
  • S15: Collaborating with community members: the human side of fish and wildlife management and research
  • S16: Agriculture and Wildlife Coexistence in the Midwest United States
  • Student Event
  • T01: Fisheries: Great Lakes I
  • T02: Wildlife: Urban-Wildlife Conflict
  • T03: Fisheries: Behavior & Physiology
  • T04: Wildlife: Wetland Conservation
  • T05: Lightning Talk Session: Fisheries
  • T06: Human Dimensions: Fisheries I
  • T07: Fisheries: Rivers & Streams
  • T08: Wildlife: Waterfowl
  • T09: Human Dimensions: Wildlife
  • T10: Fisheries: Invasive Species I
  • T11: Fisheries: Fish Conservation
  • T12: Wildlife: Cervids
  • T13: Fisheries: Habitat
  • T14: Fisheries: Great Lakes II
  • T15: Fisheries: Lakes & Reservoirs
  • T16: Fisheries: Invertebrates
  • T17: Wildlife: Mammals
  • T18: Human Dimensions: Policy & Engagement
  • T19: Fisheries: Early Life History
  • T20: Wildlife: Upland I
  • T21: Fisheries: Invasive Species II
  • T22: Wildlife: Turtles
  • T23: Fisheries: Big Rivers
  • T24: Wildlife: Upland II
  • T25: Fisheries: Techniques
  • T26: Fisheries: Invasive Species III
  • T27: Wildlife: Avian
  • T28: Lightning Talk Session: Wildlife
  • T29: Human Dimensions: Fisheries II
  • Workshop