Welcome to the interactive web schedule for the 2019 Midwest Fish & Wildlife Conference! Please note, this event has passed. To return to the main Conference website, go to: www.midwestfw.org.

For tips on navigating this schedule, click HELPFUL INFO below.

CONFERENCE SCHEDULE UPDATES & CHANGES: As a result of the prolonged government shutdown, we experienced a number of cancellations and changes to the schedule. Cancellations and changes are listed here (as of January 26, 2019). 

Sign up or log in to bookmark your favorites and sync them to your phone or calendar.

Landscape Ecology [clear filter]
Monday, January 28

1:20pm EST

(FISHERIES: RIVERS & STREAMS) Fine-scale Spatial Distribution of Resident Fish Species in Lower-order Tributaries of the Great Lakes
AUTHORS: Cynthia Nau, Dr. Patrick Forsythe – University of Wisconsin-Green Bay

ABSTRACT: Small, lower-order (1<sup>st</sup>-3<sup>rd</sup>) tributaries of the Great Lakes, including those of Green Bay and Lake Michigan, have been largely understudied relative to the open water and large rivers in the region. Nonetheless, recent research suggests that these aquatic ecosystems may play a vital role as reproductive, nursery and foraging habitat for the highly varied assemblage of fish species resident to the area. Diverse stream geomorphology and anthropogenic influences have resulted in a high degree of variation in stream condition across the watersheds of the region. This large environmental gradient allows for exploration of the ecology of resident fish species in relation to abiotic variability. The primary objective of this study is to quantify the diversity, distribution and habitat selection of resident fishes in intricate detail. This assessment has been carried out on seven Green Bay tributaries and two Lake Michigan tributaries of varying stream condition. Fish and habitat surveys were conducted over a one-kilometer reach, which was further divided into 20-meter sub-reaches using block nets. Preliminary results suggest that the fish community is a unique function of each tributary and that community composition changes as distance from the stream’s mouth increases. The detailed nature of this study will serve to inform restorative management actions, maximizing benefit to individual streams and fish species. Understudied non-game fishes may especially profit from this habitat association knowledge by allowing restoration projects to account for their species-specific requirements. Due to the vast amount of variation found in the Green Bay sub-watershed, these species to habitat relationships may be applicable to tributaries across the Great Lakes region.

Monday January 28, 2019 1:20pm - 1:40pm EST

1:20pm EST

(WILDLIFE: WATERFOWL) Habitat Heterogeneity and Wetland-dependent Bird Use in Wisconsin's Glacial Habitat Restoration Area
AUTHORS: Zack Loken, University of Wisconsin at Stevens Point; Jacob Straub, University of Wisconsin at Stevens Point; Rachel Schultz, State University of New York at Brockport

ABSTRACT: The Glacial Habitat Restoration Area (GHRA) is a 558,879-acre restoration zone in east-central Wisconsin. The GHRA was designed to enhance wildlife habitat, especially for waterbirds, through wetland restorations. We observed and counted all waterbirds on wetland basins from April – May of 2017 and 2018 using fixed location focal scans. We categorized study wetlands into 3 groups based on hydrologic modification: scrape; scrape plus wetlands with ditch plug, ditch-fill, and/or tile break; and scrape plus berm and/or berm with a water control structure. Two reference groups were included: Waterfowl Production Areas and unmodified sites without basins. Wetland plant communities were categorized following the Natural Heritage Inventory database, mapped using aerial imagery, and field checked for accuracy. After plant communities had been digitized, habitat heterogeneity was assessed within each wetland property using an interspersion-juxtaposition index (IJI). Greater values of IJI indicated that community types were more evenly dispersed throughout the wetland than areas with large blocks of similar vegetation. Wetlands with diverse habitat types distributed throughout their basins may be more attractive to waterfowl than those with a homogenous composition. Analysis of year-one data found that habitat heterogeneity, of the 38 properties, ranged from 17.7 to 85.5 and differed among hydrologic modification categories (P = 0.04). Data from year two is currently undergoing analysis. Our results will be used to assess landscape scale factors that might influence the use of restored wetlands by wetland-dependent bird species.

Monday January 28, 2019 1:20pm - 1:40pm EST

2:40pm EST

(WILDLIFE: WATERFOWL) Stepping down a Regional Waterfowl and Wetlands Conservation Decision Support Tool
AUTHORS: Matthew D. Palumbo, Jacob N. Straub – University of Wisconsin-Stevens Point

ABSTRACT: The goals of the 2012 North American Waterfowl Management Plan target a combination of biological and social objectives that are prioritized regionally through Joint Venture (JV) partnerships. The Upper Mississippi River and Great Lakes (UMRGLR) JV developed a decision support tool (DST) to assist in implementing these objectives. The DST is based on six spatially explicit model-based maps, each representing a biological or social objective weighted by input from regional decision makers. The DST depicts areas of relative value to meet the combined six objectives and therefore identifies areas for regional managers to target conservation for waterfowl and people. In 1992 Wisconsin Department of Natural Resources developed their own state-based conservation plan to achieve waterfowl population and habitat objectives.  This ‘WI Plan’ was based on a spatial hierarchy of priority regions, areas, and townships that were delineated from estimated waterfowl densities and habitat, geo-political boundaries, and expert opinion. Since 1992 managers have been working to implement conservation practices based on this system. However much has changed since this time thus, our objective was to revise the 92 WI Plan and provide an updated spatially-explicit tool to drive waterfowl habitat conservation efforts in the upcoming decades. Using the framework of UMRGLR JV, we developed six updated model-based maps representing waterfowl and human objectives specific to Wisconsin.  These maps have allowed WI conservation managers to visualize how conservation practices would be prioritized under various ranks of biological and social values. The WI DST will assist state managers with redistributing priority regions based on eco-physiographic boundaries and quantitative ranking based on the underlying biological and social data of the tool. The DST of UMRGL JV and WI demonstrate the value of incorporating spatio-temporal variation of biological and social data for conservation managers to prioritize practices.

Monday January 28, 2019 2:40pm - 3:00pm EST

4:00pm EST

(SYMPOSIA-02) Inferring Landscape-scale Connectivity Between Local Populations of the Eastern Massasauga Using Genome-scale Markers
AUTHORS: Scott Martin, H. Lisle Gibbs – Department of Evolution, Ecology, and Organismal Biology, The Ohio State University and Ohio Biodiversity Conservation Partnership, The Ohio State University; Greg Lipps, Ohio Biodiversity Conservation Partnership, The Ohio State University

ABSTRACT: Effective management of rare species relies on knowing the spatial structuring and connectivity between populations. For example, the ability of individuals to move between populations increases the likelihood of long-term persistence of a species by promoting gene flow and buffering populations against stochastic demographic events, whereas a lack of movement leads to population isolation and an increase in genetic drift. Genetic markers, such as single nucleotide polymorphisms (SNPs), can be used to determine if individuals successfully disperse between populations with a high degree of resolution. We used genome scale genetic markers to study the population connectivity of the federally threatened Eastern Massasauga (Sistrurus catenatus) which exists across the US portion of its range in small isolated populations. Specifically, we generated ddRADseq data for 114 individuals from sixteen fields comprising six putative populations in NE Ohio. We then calculated pairwise genetic distances between all sites. These distances were used to optimize resistances maps based on elevation and landcover in R. The top resistance values were then added to the program ‘Circuitscape’ which uses circuit-theory based modelling to map areas critical to maintaining genetic connectivity between sites while allowing for multiple pathways between sites. Our results show how genetic data can be used to determine spatial structuring in a patchily distributed species, and to map critical corridors that maintain connectivity between sites.

Monday January 28, 2019 4:00pm - 4:20pm EST

4:20pm EST

(SYMPOSIA-02) Using Landscape Genetics to Understand Connectivity of an Island Population of Eastern Massasauga Rattlesnakes (Sistrurus catenatus)
AUTHORS: Nathan Kudla, Grand Valley State University; Eric McCluskey, Grand Valley State University; Jen Moore, Grand Valley State University

ABSTRACT: Populations with low gene flow can become negatively influenced by increased levels of inbreeding, lower genetic diversity, and reduced adaptive potential. Landscape genetics allows for spatial and genetic information to be analyzed simultaneously to better understand how the landscape influences gene flow. This information is then used to estimate population connectivity and identify landscape features which act as barriers or promoters of gene flow. The eastern massasauga rattlesnake (Sistrurus catenatus) is a federally threatened viper typically found in wetlands throughout the Great Lakes region. Due primarily to a loss of habitat, many remaining populations are small and isolated. This lack of connectivity brings into question the survival of these populations into the future. Unlike many other populations, the eastern massasauga rattlesnakes on Bois Blanc Island, Michigan live in a relatively undisturbed habitat with a potential for high connectivity across the 88 km<sup>2</sup> landscape. We used landscape genetics to estimate genetic connectivity of eastern massasauga rattlesnakes across Bois Blanc Island. 109 Individuals were genotyped at 16 microsatellite loci and pairwise genetic distances were calculated as the proportion of shared alleles (D<sub>ps</sub>). We used resistance surface modeling to assess how the island landscape is influencing gene flow. Our results will provide insight into how eastern massasauga rattlesnake populations function in areas with limited human presence and minimal landscape alteration and if population connectivity can be maintained across a well-connected landscape with high abundance.

Monday January 28, 2019 4:20pm - 4:40pm EST
Tuesday, January 29

11:00am EST

(SYMPOSIA-10) Timber Rattlesnake Habitat Use: A Thermal Landscape Perspective
AUTHORS: William Peterman, Andrew Hoffman, Annalee Tutterow – Ohio State University

ABSTRACT: Temperature is of paramount consideration for ectothermic animals. Numerous studies have previously described multiscale habitat selection and use in timber rattlesnakes (Crotalus horridus). However, there is currently limited understanding of how habitat use and selection are related to the thermal landscape. The primary objectives of this study are to understand how the thermal landscape is affected by land use and forest management, and how spatial and temporal habitat use by timber rattlesnakes relates to the thermal landscape. To create a down-scaled near-surface air temperature model, we deployed remote temperature loggers across our focal landscape in Southeast Ohio. We then used fine-scale LiDAR data to derive spatial topographic surfaces as well as surfaces describing forest structure. Using these models, we related the predicted spatial-temporal air temperatures to field observations of radio telemetered snake locations, as well to snake body temperature data collected using internal temperature data loggers.Our near-surface air temperature and snake body temperature models both fit the data well with high predictive power. Unsurprisingly, we found that gravid females, on average, occupied areas of the landscape with higher temperatures than non-gravid snakes. We have observed large differences in parturition dates in our population. Females that give birth earlier in the summer are occupying areas that are warmer than areas occupied by females that give birth later in the summer. Our study provides a novel perspective of habitat use in timber rattlesnakes, and adds to the limited knowledge of timber rattlesnake ecology in the Midwest. A clear understanding of the landscape features affecting near-surface air temperatures and the spatial thermal ecology of timber rattlesnake has the potential to facilitate more effective and targeted habitat management.

Tuesday January 29, 2019 11:00am - 11:20am EST

1:20pm EST

(SYMPOSIA-08) Waterfowl Ecology and Management in the Lower Great Lakes
AUTHORS: Matthew Palumbo, University of Wisconsin-Stevens Point; Jacob Straub, University of Wisconsin-Stevens Point, David Luukkonen, Michigan State University; John Coluccy, Ducks Unlimited

ABSTRACT: Abstract: Applied scientific research has been an underpinning of sound waterfowl and wetland conservation for decades. The Lower Great Lakes (LGL), especially wetland and adjacent upland habitats near Lakes Erie, St. Clair, and Ontario, were historically and remain a critical region for waterfowl of the Atlantic and Mississippi Flyways. In fact, hundreds of thousands of waterfowl use this landscape as their primary breeding location and millions use the resources of the region during migration between breeding and wintering areas. Waterfowl managers and researchers in the LGL have strong partnerships and have largely focused efforts in this region on studies that improve understanding of the overall ecology of the species and how management actions can influence these birds. Specifically, the LGL have been the home to seminal studies on waterfowl bioenergetic modeling during spring migration, habitat use and movement for key focal species (e.g., mallards), monitoring and evaluation of diving sea duck distributions on the Great Lakes, studying the potential limiting factors for Great Lakes mallard populations, and influence of weather, wetland availability, and mallard abundance on productivity of Great Lakes mallards. Importantly, these studies have critical linkages to management which have serviced wetlands conservation. Our objective is to synthesize recent research that has improved our understanding of waterfowl ecology and habitat management in the region. Additionally, we will identify future research needs and information gaps to expand waterfowl conservation in the LGL.

Tuesday January 29, 2019 1:20pm - 1:40pm EST

2:40pm EST

(WILDLIFE: UPLAND 1) Reptile and Small Mammal Occupancy in Prairie Strips Integrated in an Agricultural Landscape
AUTHORS: Matthew D. Stephenson, Lisa A. Schulte – Iowa State University Department of Natural Resource Ecology and Management; Robert W. Klaver, U.S. Geological Survey, Iowa Cooperative Fish and Wildlife Research Unit

ABSTRACT: Grasslands in the Midwest United States have seen a precipitous decline over the last 150 years, resulting in the loss of millions of acres of habitat for wildlife. A large majority of the land in the Midwest is privately owned and efforts to restore habitat on large scales will have to include partnerships with private landowners. Contour buffer strips of diverse native prairie planted in row crop fields have been demonstrated to be very effective at reducing nutrient and soil runoff and may also serve as a significant area of habitat for wildlife such as reptiles and small mammals.From 2015-2018 we investigated reptile and small mammal occupancy in contour buffer strips of diverse native prairie and other on-farm habitat patches on 15 sites in Iowa, USA. We placed plywood artificial cover objects in perennially vegetated conservation features on farms and checked them between 4-20 times each year from April-October. We modeled patch occupancy in Program MARK to test if landscape variables such as patch size, fragmentation, connectivity, and vegetation diversity predicted occupancy for several species of reptiles and small mammals. We also modeled potential nuisance variables such as time-of-year, time-of-day, and weather that could affect detection probability. A greater understanding of how these less-frequently studied taxa utilize on-farm habitat could aid managers and policy makers to help make agricultural conservation programs effective for conserving as many taxa as possible.

Tuesday January 29, 2019 2:40pm - 3:00pm EST

3:40pm EST

(WILDLIFE: UPLAND 2) Effects of Field and Landscape-scale Habitat on Ring-necked Pheasant Demography
AUTHORS: Tim Lyons, University of Nebraska-Lincoln; T.J. Benson, Illinois Natural History Survey; Wade Louis, Illinois Department of Natural Resources; Mike Ward, University of Illinois at Urbana-Champaign; Richard Warner, National Great Rivers Research & Education Center

ABSTRACT: In agriculturally dominated landscapes, the habitat provided by public and private lands is critical for the conservation and management for non-game as well as game species, such as ring-necked pheasants. Management of these areas to increase pheasant populations has focused on increasing field size, the amount of grassland cover in the landscape, or managing vegetation composition within fields, to improve success during the nesting or brood-rearing stages, or the survival of breeding adults. How these actions will impact overall population growth or which stages or habitat features should be prioritized for management is not always clear. We studied how habitat conditions at the field-and landscape-scale influenced the demography of ring-necked pheasants on public and private grasslands in Illinois. Between 2013-2016, we used radio telemetry to track > 200 ring-necked pheasants and quantified the relationship between habitat features at multiple spatial scales, nest success, chick survival, and adult survival. We then used a simulation study to understand how changes to habitat features important to a particular stage ultimately affected population growth. We also examined how predator identity influenced the relationship between adult survival and habitat conditions. We found that several habitat features had contrasting effects among multiple stages and ultimately restricted population growth when management focused on maximizing performance during one stage. Our results also indicate that raptors may be a more important predator of pheasants than is generally recognized, but the risk of predation can be reduced by the management of vegetation within fields. Collectively our work highlights the importance of full life-cycle studies of demography for the effective management of wildlife and suggests that smaller fields, often overlooked in traditional conservation schemes, can play a role in pheasant management when coupled with appropriate management of vegetation within fields.

Tuesday January 29, 2019 3:40pm - 4:00pm EST
Wednesday, January 30

11:20am EST

(SYMPOSIA-14) Is What’s Good for the Bird Good for the Turtle? Landscape-scale Productivity Modeling of Declining Red-headed Woodpeckers, Eastern Box Turtles, and Spotted Turtles in the Oak Openings Region of Ohio and Michigan
AUTHORS: Jeanine M. Refsnider, Henry M. Streby – University of Toledo

ABSTRACT: Studies seeking to conserve habitat critical for the reproductive success of rare species often focus on nesting or spawning habitat.  While such habitats are clearly important components of a species’ ecological requirements, conservation efforts focused solely on habitats used for nesting or spawning, without considering the consequences of oviposition-site choice, are, at best, incomplete.  At worst, inadequate consideration for the fitness outcomes of oviposition-site choice may create ecological traps if animals are attracted to oviposition sites from which juveniles have very low probabilities of survival.  Similarly, management activities such as prescribed burns or selective harvests designed to benefit one species may negatively impact a different species, even if the two species superficially appear to have the same habitat requirements.  These problems illustrate the importance of understanding how multiple life stages of multiple species use a landscape, and how the fitness outcomes of differential habitat use impact population trends.  We are studying three imperiled, flagship species of the Oak Openings Region in Ohio and Michigan: two terrestrial species commonly associated with oak savannah habitat, red-headed woodpeckers and eastern box turtles, and an aquatic species found in flooded prairies and fens, the spotted turtle.  For all three species, we are radio-tracking adults to quantify habitat use and survival; locating and monitoring nests to quantify nest success in different habitat types; and radio-tracking juveniles from those nests to quantify effects of nest habitat on juvenile survival.  From these data, we are creating landscape-scale productivity models to predict how management activity in one habitat patch will impact productivity of all three species in nearby habitat patches.  Our overall goal is to provide land managers with spatially explicit productivity models for terrestrial and aquatic species of high conservation concern that are directly incorporable into adaptive management plans.

Wednesday January 30, 2019 11:20am - 11:40am EST