Loading…
Welcome to the interactive web schedule for the 2019 Midwest Fish & Wildlife Conference! Please note, this event has passed. To return to the main Conference website, go to: www.midwestfw.org.

For tips on navigating this schedule, click HELPFUL INFO below.

CONFERENCE SCHEDULE UPDATES & CHANGES: As a result of the prolonged government shutdown, we experienced a number of cancellations and changes to the schedule. Cancellations and changes are listed here (as of January 26, 2019). 

Sign up or log in to bookmark your favorites and sync them to your phone or calendar.

Inland Lake/Reservoir [clear filter]
Monday, January 28
 

10:20am EST

(FISHERIES: LIGHTNING TALK) Using a Long-term Tagging Study to Evaluate Escapement, Survival, and Angler Catch of Stocked Muskellunge in Ohio Reservoirs
AUTHORS: Curtis P. Wagner, Kevin S. Page – Ohio Division of Wildlife

ABSTRACT: Muskellunge fisheries in Ohio are maintained through stocking.  The Ohio Division of Wildlife (ODOW) stocks approximately 20,000 advanced-fingerling (10–12 inches) Muskellunge annually among nine reservoirs (1 fish/acre).  Currently, voluntary angler reports of Muskellunge catches provide managers with information on the locations, numbers, sizes, and harvest of Muskellunge.  However, this voluntary reporting approach potentially misses critical information on population dynamics metrics such as survival, escapement, and the probability of catching a fish.  To provide additional information on which to evaluate Muskellunge population dynamics in Ohio, the ODOW initiated a long-term tagging study.  Starting in 2013, all Muskellunge stocked into four study reservoirs (>43,000) have been implanted with passive integrated transponders (PIT).  Escapement of Muskellunge is monitored using in-stream PIT detection systems stationed within dam spillways.  Anglers report in-reservoir recaptures using handheld PIT tag readers.  To date, more than 850 implanted Muskellunge have been detected or reported. Focusing on the escapement component of the study, we found that escapement of Muskellunge appears to vary seasonally and depend on the type of dam water control structure.  For one reservoir, the probability of escapement was 4 – 36%, annually.  Together, these estimates provide a more comprehensive picture of Muskellunge fisheries in Ohio reservoirs.

Monday January 28, 2019 10:20am - 10:30am EST
VETERANS MEETING ROOM A/B

10:40am EST

(FISHERIES: BEHAVIOR & PHYSIOLOGY) The Expression of Bluegill Behavioral Types in Chronically Heated Environments
AUTHORS: Tyler Grabowski, University of Illinois; David Wahl, Illinois Natural History Survey; Joe Parkos, Illinois Natural History Survey; Dalon White, University of Illinois; Anthony Porreca, Illinois Natural History Survey

ABSTRACT: Global climate change is expected to exert selective pressures on behavioral phenotypes within freshwater ecosystems through environmental changes associated with chronic warming of water temperatures. We compared the behavioral profiles of bluegill sunfish (Lepomis macrochirus) from three power-plant cooling reservoirs to the behavioral tendencies of bluegill from three ambient reservoirs to investigate whether long-term exposure to increased water temperatures influences the expression of behavioral phenotypes. Power-plant cooling reservoirs were considered as model systems for global warming due to their year-round elevated water temperatures (~5°C) when compared to ambient reservoirs. We quantified activity, boldness, and exploration through 30-minute assays in a common laboratory setting that tested the spatial usage and response of individual fish to a suite of situations involving novel items and a predator, largemouth bass (Micropterus salmoides). For each assay, multiple measurements were recorded for each behavior, leading to the development of a principal component score (PCA) for activity, boldness, and exploration for each individual. PCA scores for each behavior were compared between groups (heated or ambient) and then used to determine how well behaviors correlated to one another within groups. Distinct behaviors did not differ between bluegill from heated and ambient lakes. However, we found significant directional changes between groups for the correlations of activity and exploration as well as for boldness and exploration. These results suggests that chronic exposure to warming can influence the expression of behaviors, providing insight for how the behavioral composition of bluegill populations may be modified in chronically warmed systems.

Monday January 28, 2019 10:40am - 11:00am EST
CENTER STREET ROOM C

11:00am EST

(SYMPOSIA-01) Using “Standard” vs. “Standardized” Sampling Methods to Evaluate Sport Fish Regulations
AUTHORS: Jeremy J. Pritt, Joseph D. Conroy – Ohio Department of Natural Resources, Division of Wildlife

ABSTRACT: In 2009, the American Fisheries Society (AFS) published a recommended set of Standard Methods, which sought to provide comparable fisheries data across North America. Since then, many agencies and researchers have adopted these standard methods. However, to evaluate regulations agencies often use long-term data produced by “standardized” methods—consistently used, long-term approaches that may have been shared among multiple agencies but that also differ from the North American Standard Methods (NASM). Significant barriers may exist for fisheries managers and researchers who consider transitioning from “standardized” methods to the NASM. Here, we illustrate important differences between “standard” and “standardized” methods in the context of evaluating sport fish regulations. To make informed decisions regarding regulation effectiveness, fisheries managers require population-specific data such as abundance, age and size structures, growth, and mortality measured before the regulation was implemented and for some period after. In some cases, the NASM may fail to provide these crucial data. To illustrate, we contrast two case studies: (1) using the NASM to evaluate reservoir crappie harvest regulations; as compared to, (2) retaining a multi-agency, non-NASM, but “standardized” method to assess the efficacy of Ohio River Sauger regulations. We conclude by recommending the following for future standard method development work: (1) explicitly consider and detail the sport fish population data needs of fisheries managers; (2) develop a mechanism to formally capture emerging assessment techniques as standard methods; and, (3) create a structure, through AFS, tasked with identifying, evaluating, and communicating accepted standard methods and their use.

Monday January 28, 2019 11:00am - 11:20am EST
HOPE BALLROOM A

11:20am EST

(SYMPOSIA-01) Standardized and Robust Analyses for Evaluating Fishing Regulation Effectiveness
AUTHORS: Dray D. Carl, Wisconsin Department of Natural Resources; Daniel E. Shoup, Oklahoma State University; Martha E. Mather, Kansas Cooperative Fish and Wildlife Research Unit; Quinton E. Phelps, West Virginia University

ABSTRACT: Regulation changes are frequently used to alter lakes and reservoir fisheries to achieve management goals.  Although regulations are generally thought to be effective, fisheries management is hampered by a lack of published studies evaluating regulation effectiveness.  This is particularly troublesome given examples where regulations did not have their expected result, as the lack of published literature on this topic means there is little guidance as to when regulations will be effective.  Further, the few studies that address the topic typically just compare samples from before and after regulations are applied.  In this traditional before-after approach, many temporal changes (e.g., drought, flood, mean annual temperature, etc.) could drive changes in the fish population over time that would erroneously be attributed to the regulation change.  Use of the BACI (before, after, control, impact) design is a more robust approach that avoids erroneous decisions that might result from traditional before-after analyses.  However, the BACI design is little used, probably because of the perception that it would require more effort than is available to sample additional control lakes.  However, we suggest that some prior planning and creativity can make BACI designs possible with little additional work, especially in situations where standardized sampling is routinely used to monitor other lakes that could serve as control systems.  It is even possible that multi-state projects could be performed using routine monitoring that is already planned to provide control lakes or additional replication in cases where both states use the same standard sampling protocol.  State agencies considering regulation changes have a unique opportunity to significantly improve our understanding of regulation effectiveness if they planned BACI studies to track effects of new regulations through time, benefiting the entire field with information that up to this point has been sorely lacking.

Monday January 28, 2019 11:20am - 11:40am EST
HOPE BALLROOM A

11:40am EST

(SYMPOSIA-01) Wisconsin's Northern Highland Fishery Research Area: A Long-term Comprehensive Program for Evaluating Fisheries Regulations
AUTHORS: Stephanie L. Shaw, Greg G. Sass – Wisconsin Department Natural Resources, Office of Applied Science, Escanaba Lake Research Station

ABSTRACT: The Northern Highland Fishery Research Area (NHFRA) includes five lakes in north central Wisconsin that were designated for experimental fisheries research purposes in the 1940s by the Wisconsin Conservation Commission. The five lakes were selected to encompass the diversity of lake types and fish communities present in Wisconsin. The NHFRA has maintained the longest running compulsory creel census in the world (1946-present), has monitored fish community, aquatic ecosystem, and climatic variables through standardized surveys, and has conducted directed research to evaluate unrestricted fisheries (no closed season, bag limits, or length limits), harvest regulations, gear restrictions, and the influences of stocking over time. Key species evaluated in the context of fisheries regulations or stocking have included walleye Sander vitreus, smallmouth bass Micropterus dolomeiu, northern pike Esox lucius, muskellunge Esox masquinongy, and lake trout Salvelinus namaycush. The creel census and standardized fish surveys have afforded valuable information to WDNR biologists regarding angler and fish responses (single-species and fish community) to a given regulation change. We will summarize the history of the Northern Highland Fishery Research Area and discuss several case studies of walleye, muskellunge, and smallmouth bass responses to harvest regulations or the lack thereof that have been directly applied to fisheries management in Wisconsin. By combining long-term creel survey information with standardized fish population surveys, Wisconsin has been able to make sound, science-based decisions to manage its diversity of fishery opportunities and has also been able to rapidly respond to emerging fisheries issues.

Monday January 28, 2019 11:40am - 12:00pm EST
HOPE BALLROOM A

1:20pm EST

(SYMPOSIA-01) Data-Driven Harvest Regulations in Minnesota: Approaches, Priorities, and Northern Pike
AUTHORS: Shannon J. Fisher, Allen G. Stevens, Bethany J. Bethke – Minnesota Department of Natural Resources

ABSTRACT: The Minnesota Department of Natural Resources (MNDNR) maintains fisheries management plans on more than 4,400 lakes.  To keep plans current, inform harvest regulation development, and keep pace with changing lake conditions, >650 lake surveys are completed annually.  Minnesota’s lake survey program began over 70 years ago, with the modern program established in 1993.  Survey data have informed management decisions locally and statewide.  The evolution of Northern Pike management is a key example of how Minnesota has utilized this valuable database.  During the 1980s, increasing numbers of anglers and fisheries managers became concerned about long-term declines in Northern Pike sizes.  As a result, MNDNR experimented with length-based regulations.  Using pre- and post-regulation lake survey data (1970s-early 2000s) evidence was found that length limits could improve size structure – but not uniformly across lakes.  Therefore, a limited suite of “Toolbox” regulations for lake-specific management was developed.  Pre- and post-Toolbox regulation survey data were used to perform a meta-analysis (>50 lakes) that indicated >10 years of post-data were needed to detect size structure improvements across a range of lakes.  In 2016, we strategized to improve Northern Pike management across Minnesota and three starkly different sets of spatially clustered objectives emerged.  In 2018, lakes meeting regulatory and biological criteria were divided into three zones with different length and bag limits.  Our standardized lake survey program was integral in identifying lakes included in the evaluation and will provide the necessary post-regulation data.  Given valuable lessons learned in early analyses, we know that it will take time to detect results.  Similar evaluations have proven extremely useful in the development of regulations to better manage other recreationally important species in Minnesota, including Walleye Sanders vitreus, Largemouth Bass Micropterus salmoides, and Muskellunge Esox masquinongy. 

Monday January 28, 2019 1:20pm - 1:40pm EST
HOPE BALLROOM A

1:40pm EST

(SYMPOSIA-01) First Year Evaluation of a Regulation Change for Walleye at Cedar Bluff Reservoir, Kansas
AUTHORS: Susan Steffen, Kansas Department of Wildlife, Parks and Tourism

ABSTRACT: A 21-inch minimum length limit (MLL) on Walleye at Cedar Bluff Reservoir, Kansas, was implemented in 2018 to prevent recruitment overfishing by reducing exploitation of spawning-sized Walleye. Initially, anglers opposed the 21-inch MLL and voiced this through various outlets: on the 2013 Kansas Licensed Angler Survey, at commission meetings in 2017, and during the public meeting about the MLL in July of 2017. To better understand anglers’ feelings toward the MLL, I added supplemental questions at the end of the access point creel survey that was conducted from March to October 2018. Anglers that agreed to answer the additional questions were asked about the number of days they fished at Cedar Bluff Reservoir last year, their level of support for the 21-inch MLL on Walleye, and their confidence in KDWPT. Confidence in KDWPT was measured by four questions in a Likert scale format based on responses from 1 to 5 where 1 = strongly disagree and 5 = strongly agree. I was able to obtain useable responses from 200 anglers from March through early September 2018. The average age of anglers was 47 years old (SD = 16.13) and they fished on average 22 days (SD = 26.29) last year at Cedar Bluff Reservoir. The plurality, or 34%, of anglers interviewed supported the 21-inch MLL on Walleye. Confidence in KDWPT was high, with Likert scale means ranging from 3.95 to 4.10. Results from the remainder of anglers interviewed in September and October of 2018 will be presented as well. The creel survey and supplemental interview questions will continue through 2020 to determine if angler support for the Walleye regulation changes as the Walleye population responds to the regulation as well.

Monday January 28, 2019 1:40pm - 2:00pm EST
HOPE BALLROOM A

1:40pm EST

(SYMPOSIA-03) Environmental DNA Monitoring of Effectiveness of Bigheaded Carp Removal from Creve Coeur Lake, Missouri
AUTHORS: Catherine A. Richter, Katy E. Klymus, Nathan Thompson, Jeffrey C. Jolley, Duane C. Chapman – U.S. Geological Survey; PRESENTER: Rick Lance

ABSTRACT: Creve Coeur Lake is a large natural floodplain lake intermittently connected to the Missouri River near St. Louis, Missouri. The lake has been invaded by Bighead Carp (Hypophthalmichthys nobilis) and Silver Carp (Hypophthalmichthys molitrix), collectively known as Bigheaded Carp. Both are native to Asia. The invasion has resulted in impairment of the native crappie (Pomoxis spp.) fishery, and hazards to recreational users. Fish can enter the lake from the Missouri River only during high water events. During the winter of 2017-2018, an intensive removal effort was conducted using the unified fishing method. A total of approximately 108,129 kg of Bigheaded Carp was removed from the lake in February 2018. Monitoring of Bigheaded Carp environmental DNA (eDNA) concentrations was conducted at intervals before and after the removal effort. Water was sampled at 53 locations equally spaced along transects covering the entire surface area of Creve Coeur Lake, a smaller upstream connected lake (Mallard Lake), and the channel between the two lakes. We measured eDNA concentrations with quantitative PCR using two marker sets specific to the genus Hypophthalmichthys, and thus able to detect and quantify DNA from both species with equal efficiency. Our results showed a decrease in eDNA concentration with decreasing water temperature over three sampling events before the removal effort, in October 2017, November 2017, and January 2018. After the removal effort, we observed an increase in eDNA in March 2018, possibly resulting from the presence of injured fish and carcasses, followed by a sharp decrease in eDNA in April 2018. Our results illustrate the utility of eDNA monitoring of management actions, the advantages of repeated sampling over time, and some challenges associated with this application of eDNA analysis.

Monday January 28, 2019 1:40pm - 2:00pm EST
HOPE BALLROOM C

2:20pm EST

(SYMPOSIA-01) Maintaining Quality Fisheries in Small Public Lakes Using Restrictive Harvest Regulations
AUTHORS: Bryan Kinter, Mike Wilkerson – Ohio Division of Wildlife

ABSTRACT: Overharvest is a common result of opening small lakes and reservoirs to unregulated public fishing. In lakes comprised primarily of largemouth bass and sunfish (Lepomis spp.), populations dominated by large, older sunfish and abundant largemouth bass quickly become dominated by abundant, small sunfish and few largemouth bass. This can occur after only one year of public fishing and results in a decline in angler use and satisfaction. Maintaining quality fisheries in small lakes requires restrictive harvest regulations of both sunfish and largemouth bass, and frequent evaluation of these regulations is required. Using a combination of trapnet and electrofishing surveys, harvest quotas, length limits, and bag limits, the ODNR-Division of Wildlife successfully maintained quality sunfish/largemouth bass fisheries on the Lake La Su An Wildlife Area from 1983-2011, after these lightly-fished, privately owned lakes were opened to public fishing. Each spring, trapnet and electrofishing surveys were conducted to evaluate bluegill and largemouth bass abundance and size structure. Bluegill harvest quotas were generated based on these estimates while restrictive length limits (minimum or slot) were set for largemouth bass. A complete creel census monitored harvest. From 1987-2011, an average of 40.8% of bluegill over 150mm were also over 200mm, and largemouth bass electrofishing CPE averaged 371 fish/hour. Over 45% of bluegill harvested were greater than 200 mm in total length. The Lake La Su An fishery demonstrates that restrictive harvest regulations can be used to maintain quality fisheries in small lakes open to public fishing. However, extensive agency resources are required to collect the data needed to manage these types of fisheries.

Monday January 28, 2019 2:20pm - 2:40pm EST
HOPE BALLROOM A

3:20pm EST

(FISHERIES: HABITAT) Hypoxia Alters Spatial Overlap of Primary and Secondary Consumers in the Pelagic Food Web of Reservoirs
AUTHORS: Rebecca A. Dillon, Aquatic Ecology Laboratory, Department of Evolution, Ecology, and Organismal Biology, The Ohio State University; Joseph D. Conroy, Inland Fisheries Research Unit, Division of Wildlife, Ohio Department of Natural Resources; Stuart A. Ludsin, Aquatic Ecology Laboratory, Department of Evolution, Ecology, and Organismal Biology, The Ohio State University

ABSTRACT: Hypolimnetic hypoxia has been shown to affect individual behavior, food web structure and interactions, and ecosystem function in aquatic ecosystems worldwide. While recent research has explored the impact of hypolimnetic hypoxia on coastal marine and large-lake food webs, less is known about the effects of hypoxia on reservoir food webs, especially pelagic ones. To address this gap, we examined how the spatial distribution of primary consumers (zooplankton) and secondary consumers (i.e., zooplanktivorous fish, clupeids; vertically migrating, hypoxia-tolerant, macroinvertebrates, Chaoborus spp.) varied between periods of normoxia (spring) and hypoxia (summer) in two small (surface area = 13.5, 11.7 km<sup>2</sup>), shallow (average depth = 6.6, 5.7 m) Ohio reservoirs. We tested the hypothesis that hypolimnetic hypoxia increases spatial overlap among zooplanktivorous fish, macroinvertebrates, and their potential zooplankton at night, whereas it reduces their overlap during the day because hypoxia-tolerant macroinvertebrates can use the hypoxic hypolimnion (and their zooplanktivorous fish predators cannot). We used net tows and hydroacoustics to describe the distribution and spatial overlap of zooplankton, Chaoborus, and zooplanktivorous fish during both day and night, and simultaneously measured physiochemical attributes (e.g., temperature, dissolved oxygen concentration, light levels). We found partial support for our hypothesis, as the overlap (determined from visual examination of net tow and hydroacoustics data) between fish and zooplankton was always high during periods with hypoxia, and was only high at night during normoxia. The overlap between Chaoborus and zooplankton was higher at night than during the day during periods of both normoxia and hypoxia, as Chaoborus were found at all depths during the day. Fish, Chaoborus, and zooplankton had the greatest spatial overlap at night during hypoxic periods. Our findings highlight the potential for hypoxia to alter pelagic food-web interactions in reservoir ecosystems.

Monday January 28, 2019 3:20pm - 3:40pm EST
CENTER STREET ROOM B

3:40pm EST

(FISHERIES: HABITAT) Projected Temperature Increases Decrease Sport Fish Habitat Quality in Ohio Reservoirs
AUTHORS: Richard R. Budnik, Ohio Department of Natural Resources, Division of Wildlife, Inland Fisheries Research Unit; Geoffrey B. Steinhart, The Ohio State University, Department of Evolution, Ecology and Organismal Biology, Aquatic Ecology Laboratory; Joseph D. Conroy, Ohio Department of Natural Resources, Division of Wildlife, Inland Fisheries Research Unit; Richard D. Zweifel, Ohio Department of Natural Resources, Division of Wildlife; Stuart A. Ludsin, The Ohio State University, Department of Evolution, Ecology and Organismal Biology, Aquatic Ecology Laboratory

ABSTRACT: Increased temperatures due to climate change will likely decrease the quality and quantity of habitat available to reservoir sport fish, although the extent of the effect will likely be variable by species. We developed bioenergetics models to estimate growth rate potential (GRP), a metric of habitat quality, for Largemouth Bass, saugeye, and White Crappie during a 13-year span (2005–2016) in three Ohio reservoirs that varied in productivity (summer 2012–2014 concentrations: chlorophyll a 7–55 µg/L; total phosphorus 21–106 µg/L). We contrasted these baseline measures of habitat quality with projected future changes in GRP and high-quality habitat (HQH; GRP > 0) availability under stabilizing (RCP 4.5) and increasing (RCP 8.5) carbon emission scenarios which estimate air temperatures will increase 2.5 and 4.8 degrees C by 2099. Our simulations predicted Largemouth Bass, saugeye, and White Crappie GRP would decrease an average of 0.001 g/g/day, 0.003 g/g/day, and 0.007 g/g/day, respectively, under RCP 4.5, and 0.005 g/g/day, 0.004 g/g/day, and 0.013 g/g/day under RCP 8.5. The average reduction of HQH was greatest for saugeye (20% loss) under RCP 4.5 and for White Crappie (45% loss) under RCP 8.5. Largemouth Bass HQH was the least affected with an average reduction of < 9% under both scenarios in all reservoirs. Temperature increases in the highest productivity reservoir led to the greatest reduction in habitat quality and quantity among reservoirs. These outcomes, as shaped by temperature changes, have the potential to influence not only the performance of individual fish but also will affect population dynamics, trophic interactions, and fish community structure.

Monday January 28, 2019 3:40pm - 4:00pm EST
CENTER STREET ROOM B

4:00pm EST

(FISHERIES: HABITAT) Comparing the Effects of Artificial Habitat and Coarse Woody Habitat on Macroinvertebrate Communities and Largemouth Bass Growth
AUTHORS: Eric J. Gates, University of Illinois Urbana-Champaign; Anthony Porreca, Illinois Natural History Survey; Joseph Parkos III, Illinois Natural History Survey; David H. Wahl, University of Illinois Urbana-Champaign.

ABSTRACT: Lentic ecosystems are negatively affected by habitat degradation due to reservoir senescence and riparian zone development. The addition of coarse woody habitat (CWH) and artificial habitat (e.g., plastic fish attractors) is a popular management strategy used to enhance systems that have experienced declines in habitat availability. However, the mechanisms by which CWH and artificial habitat additions influence aquatic food webs remain understudied. We introduced either artificial habitat structures or CWH (Quercus alba) into ten 0.04-ha experimental ponds to test whether macroinvertebrate communities and largemouth bass growth differed between introduced habitats. The experiment ran for three months and structures were allowed to condition for one month prior to stocking juvenile largemouth bass. Macroinvertebrate communities were similar between habitat types. However, more taxa were found on the artificial structures and macroinvertebrate communities colonizing CWH appeared to increase relative to artificial habitat by the end of experiment. Largemouth bass growth did not differ between CWH and artificial habitat. Although not specifically tested, macroinvertebrate communities appeared to be influenced by the presence and amount of periphyton colonizing habitat structures. Our results indicate that habitat material itself was not as important as providing a stable substrate for primary production and subsequent macroinvertebrate colonization. Longer experiments may be necessary to determine the maximum influence of these habitats on primary and secondary productivity, particularly as CWH conditions.

Monday January 28, 2019 4:00pm - 4:20pm EST
CENTER STREET ROOM B

4:20pm EST

(SYMPOSIA-01) Crappies in Ohio: Building a General Approach to Determining Regulation Success Based on Standard Fish Population Assessments and Angler Feedback
AUTHORS: Joseph D. Conroy, Jeremy J. Pritt, Kevin S. Page, Stephen M. Tyszko, Richard D. Zweifel – Ohio Department of Natural Resources, Division of Wildlife

ABSTRACT: Crappie harvest regulations seek to increase yield by allowing additional growth before anglers remove fish from the population.  Density-dependent slow growth, stunting, potential for overharvest, angler preferences for larger crappies, and angler preferences for regulations all present challenges to successfully managing crappie fisheries by using harvest regulations.  In Ohio, minimum length limits for harvest and daily bag limits have been used to regulate crappie populations since the early 1990s, with regulations enacted at more than 40 reservoirs by 2010.  The success of these regulations was assessed by examining changes in abundance (CPUE of age-2 crappies and older), growth (mean length at age 2), and size structure (PSD of harvestable-sized fish) from standard assessments conducted during the period 2003–2017.  Further, we determined angler satisfaction with the numbers and sizes of crappies caught post-regulation along with their support for the regulation from interviews during creel surveys and from postcard surveys during 2017.  Using linear mixed models, we found that in general the regulation led to increased crappie abundance, slowed growth, and changed size structure; the regulation benefited crappie populations more in larger (> 1,000 ha) and more productive (total phosphorus concentrations > 75 micrograms/L) reservoirs.  Angler satisfaction (percent satisfied) with the numbers of crappies caught ranged 30–68% and with the sizes of crappies caught ranged 24–72%, yet there was clear support for both the minimum length limit (percent support ranged 64–92%) and the daily bag limit (66–93%) with little opposition (percent opposition was < 11%) to the regulation.  These analyses ultimately led to removing the minimum length limit and daily bag regulation at 13 reservoirs.  More importantly, however, a general approach to regulation evaluation was developed, which includes analysis of standardized data on both fish populations and their anglers.

Monday January 28, 2019 4:20pm - 4:40pm EST
HOPE BALLROOM A

4:40pm EST

(SYMPOSIA-01) A Portfolio Approach to Integrated Assessment and Research Can Provide a Larger Context for the Successful Evaluation of Fisheries Harvest Regulations
AUTHORS: Martha E. Mather, U. S. Geological Survey, Kansas Cooperative Fish and Wildlife Research Unit, Division of Biology, Kansas State University; John M. Dettmers, Great Lakes Fishery Commission; Roy A. Stein, Aquatic Ecology Laboratory, The Ohio State University; Donna L. Parrish, U.S. Geological Survey, Vermont Cooperative Fish and Wildlife Research Unit, University of Vermont; David Glover, U.S. Fish and Wildlife Service

ABSTRACT: Harvest regulations are essential tools that fisheries managers use to alter fish populations and achieve angler satisfaction. Evaluation of regulations is essential but evaluating all regulations for all species in all systems across multiple time periods is not logistically feasible. Thus, a strategic plan that identifies what regulations need to be evaluated where, when, and how can assist effective decision-making. Specifically, an integrated framework of assessment and research (i.e., the portfolio approach) can provide a larger context in which to design, implement, and interpret harvest regulation evaluations. Using examples, we illustrate this multi-step approach. First, a shared vision for individual fisheries (species, system, individual population, goal) that is jointly created by a collaborative group of researchers and managers is essential. Second, using a series of linked questions, objectives, and goals, the collaborative team can conceptualize (a) desired outcomes of specific harvest regulations given population characteristics, (b) challenges to achieving those outcomes, and (c) data needed to differentiate among population responses to regulations. Third, by applying a portfolio of interacting data types (e.g., assessment, applied research, basic science, synthesis), researchers and managers can operationalize a pathway to achieve the desired angler outcome given existing population conditions. Fourth, by using rigorous scientific principles, the team can improve all aspects of assessment and research. Specifically, a strategic plan that considers multiple starting population conditions, a range of harvest regulations, and different angler outcomes can integrate all assessment and research data to better inform management decisions. Fifth, adhering to a set of agreed-upon, regularly-evaluated 10-year goals allows fisheries professionals to track progress and plan next steps. Although agencies face different challenges across species, systems, and populations, all can advance successful science-based management by utilizing components of this portfolio approach for harvest regulation evaluation.

Monday January 28, 2019 4:40pm - 5:00pm EST
HOPE BALLROOM A
 
Tuesday, January 29
 

10:20am EST

(SYMPOSIA-07) Using Acoustic Telemetry to Re-establish Historic Fisheries
AUTHORS: Cameron Goble, Hilary Meyer, Mark Fincel, Chelsey Pasbrig – South Dakota Game, Fish and Parks; Dylan Turner, U.S. Fish and Wildlife Service

ABSTRACT: Acoustic telemetry is often used to document fish behavior including survival, movement and habitat use. We used information from a combination of a passive acoustic receiver arrays, active tracking, and fisheries assessments to evaluate the potential to reestablish historic Paddlefish (Polyodon spathula) and Shovelnose Sturgeon (Scaphirhynchus platorynchus) fisheries in Lake Sharpe, a Missouri River impoundment in central South Dakota.  In 2015, South Dakota Game, Fish and Parks and U.S. Fish and Wildlife Service began stocking paddlefish into Lake Sharpe to reestablish a sport fishery last open in 1964. We used acoustic telemetry to document movement patterns and habitat use of translocated adult paddlefish (n =40) and determine post-stocking dispersal and survival of age-0 paddlefish (n = 50). We used information from seasonal movement patterns of translocated adult paddlefish to assess the feasibility of creating a shore based recreational fishery.  Post-stocking dispersal rates of age-0 paddlefish was used to prioritize future stocking locations. We also used acoustic telemetry to document movement and population dynamics (recruitment, growth, mortality) of a remnant Shovelnose Sturgeon (n = 50) population in Lake Sharpe. A combination of acoustic telemetry and a mark-recapture study will provide information on basic population demographics of Shovelnose Sturgeon in Lake Sharpe.  We will incorporate Shovelnose Sturgeon population dynamics into modeling software (e.g. FAMS) to set appropriate harvest regulations for Shovelnose Sturgeon.  Here, we provide a case study of using acoustic telemetry paired with traditional fisheries assessment tools as important components of fisheries management decision making in South Dakota.

Tuesday January 29, 2019 10:20am - 10:40am EST
HOPE BALLROOM A

10:20am EST

(FISHERIES: LAKES & RESERVOIRS) Otolith Microchemistry as a Tool to Understand Contributions of Stocked Channel Catfish in Reservoir Populations
AUTHORS: Cory Becher, The Ohio State University, Aquatic Ecology Laboratory, EEOB; Stephen M. Tyszko, Ohio Department of Natural Resources-Division of Wildlife; Dr. John Olesik, The Ohio State University, Trace Elements Research Laboratory; Dr. Stuart A Ludsin, The Ohio State University, Aquatic Ecology Laboratory, EEOB

ABSTRACT: Stocking is a key management tool used to establish or enhance fisheries in reservoir ecosystems. Quantifying the contribution that stocked individuals make to the fishable population should be an essential component of any stocking program. However, such post-stocking assessment is oftentimes neglected, likely owing to difficulties associated with using conventional (i.e., artificial) tags to discern stocked individuals from wild-produced ones. To help the Ohio Division of Wildlife (DOW) better assess its Channel Catfish (Ictalurus punctatus) reservoir stocking program, we have been evaluating the use of otolith microchemistry—quantified using laser-ablation plasma-mass spectrometry—as a natural tag to discriminate between stocked and wild-produced individuals. Herein, we first present results from predictive quadratic discriminate function (QDF) models that were developed for three reservoirs, which we used to differentiate wild-produced individuals from hatchery-reared individuals. These models were built using known signatures from the hatchery and reservoirs. We used core and edge chemistry of hatchery-reared broodstock and juveniles, as well as the recent edge chemistry of individuals captured in the three reservoirs. Afterwards, we present findings from our predictive analyses, which used the QDF models to classify reservoir individuals unknown core signatures as either stocked (hatchery origin) or wild-produced. Our preliminary findings indicate that otolith microchemistry can be used as a tool to identify the natal origin of wild-caught fish in our study reservoirs, with stocked fish comprising less than half of the population at large in each reservoir. We ultimately discuss the value of this approach for helping management agencies such as the Ohio DOW assess the effectiveness of their channel catfish stocking programs.

Tuesday January 29, 2019 10:20am - 10:40am EST
CENTER STREET ROOM C

10:40am EST

(FISHERIES: LAKES & RESERVOIRS) Age and Growth of Blue Catfish in Two North-Central Kansas Reservoirs
AUTHORS: Ernesto Flores, Kansas Department of Wildlife, Parks, and Tourism; William J. Stark, Fort Hays State University

ABSTRACT: Age information is a management tool used by fisheries biologists to characterize populations. The Blue Catfish (Ictaluris furcatus) is a riverine species that grow to trophy lengths and have been introduced into Kansas Reservoirs. Blue Catfish were introduced into Wilson Reservoir in 2006 and Lovewell Reservoir in 2010 with a common management objective, establishing a trophy fishery. Standard sampling protocol (SSP) has misrepresented the Blue Catfish population status in both reservoirs; a targeted sampling effort was conducted in the summer of 2016 in Lovewell Reservoir using low-pulse electrofishing and in 2017 using float-lines to gain insight on the population structure. A total 170 fish were collected from Wilson Reservoir with a TL ranging 210-860 mm. We sampled Lovewell Reservoir and collected 146 individuals ranging from 220-860 mm. Pectoral spines were collected from each individual and used for aging. Annual stockings were scheduled for Lovewell reservoir from 2010-2014 approximately at 1 fish/acre excluding the year 2013 stocking at 0.33 fish/acre. Age 6 fish comprised 52% of the sample, 2% at age 5, 13% age 4, 3% age 3, 23% age 2, and 4% age 1. Wilson Blue Catfish stocking rates were conducted at 2 fish/acre in 2006 and 2008; stocking rates were 1 fish/acre in 2007, 2010, 2011, 2012, 2013, 2014, and 2016. Age 11 fish made up 13% of the sample, age 10 at 49%, 36% were age 9, and 7% age 1. Age classes 2, 3, 4, 5, 6, and 7 were not represented in the sample. Detection of these missing year classes may have been caused by low lake levels during this time period.

Tuesday January 29, 2019 10:40am - 11:00am EST
CENTER STREET ROOM C

11:00am EST

(FISHERIES: LAKES & RESERVOIRS) Active Bluegill Management for Improved Angling Quality: Walnut Point Lake a Case Study in Central Illinois
AUTHORS: Michael Mounce, Division of Fisheries, Illinois Department of Natural Resources

ABSTRACT: Anglers want quality fishing opportunities and a growing body of literature indicates that active bluegill management can maintain or increase angling quality in bluegill fisheries. Panfish anglers are a very important part of the angling community, but often ignored in developing quality fisheries due to stereotyped as being primarily harvest-oriented. In 1999, as part of a state-wide bluegill management study, a 203 mm minimum length limit and 10 bluegill/day harvest limit were applied to Walnut Point Lake (21 ha). Initial results looked promising, but bluegill soon stockpiled below the minimum length limit, which is typical in fish populations with good recruitment and average growth. In 2007, a maximum length limit was applied allowing the harvest of 15 bluegill/day, of which, only 5 could be > 203 mm. Age structure and the number of large bluegill collected improved. In 2013, concerns regarding body condition and potentially growth prompted liberalization of the limit to 20 bluegill/day (still allowing 5 fish > 203 mm). Body condition and the number of large bluegill collected improved. Under the maximum length limit the average proportion of large bluegill (> 203 mm) collected in surveys is significantly higher (P< 0.02) than in pre-regulation years (< 1999). The application and tailoring of this regulation, coupled with angler education, has demonstrated biological and sociological benefits in this bluegill fishery for eleven consecutive years. Resource-appropriate regulations, similarly tailored, could provide long-term angling quality benefits in other bluegill and panfish fisheries while maintaining harvest opportunities.

Tuesday January 29, 2019 11:00am - 11:20am EST
CENTER STREET ROOM C

11:40am EST

(FISHERIES: LAKES & RESERVOIRS) Quantifying Fish Habitat Impairment in Iowa's Lakes and Reservoirs
AUTHORS: Erin Haws, Iowa Department of Natural Resources

ABSTRACT: Freshwater ecosystems provide a diverse and extensive supply of resources to fauna and flora living within, to surrounding ecosystems, and human economies. As bodies of water evolve, so do the methods used to protect and restore them. Over the past decade, emphasis on sustaining freshwater ecosystems has led to a large expansion in the development of protective policies and restoration programs aiming to improve aquatic habitat. A recurring challenge to fish habitat restoration lies in defining impairment factors, their scale and the rate at which they are occurring in a system. Comprehensive assessments are therefore needed to identify impairments, prioritize waterbodies in need of restoration, and provide improved methods to measure local fish habitat using feasible metrics. This study provides an expansive look into lake and reservoir fish habitat in Iowa based on a survey reporting on all significant publicly owned lakes recognized by the Iowa Department of Natural Resources (DNR). The survey asked Iowa DNR Fisheries Biologists to report the degree of impairment of a set of variables for each individual waterbody in their management area. Multivariate factors were classified using the methods of Krogman and Miranda (2016), characterizing twelve broad constructs of fish habitat impairment. Study objectives include describing fish habitat impairment trends and identifying differences across lake type, watershed location, and status in the Lake Restoration Program. Future research plans aim to quantify relationships between fish habitat impairment constructs and measured water quality, physical, and biological parameters within existing datasets to evaluate the resources available to adequately measure fish habitat.

Tuesday January 29, 2019 11:40am - 12:00pm EST
CENTER STREET ROOM C

1:40pm EST

(SYMPOSIA-11) Full Lake Eradication of Quagga Mussels Using Low Doses of EarthTec QZ Ionic Copper
AUTHORS: David Hammond, Ph.D., Earth Science Laboratories, Inc.;Gavin Ferris, M.S., Solitude Lake Management, Inc.

ABSTRACT: In 2017 Earth Science Labs, Inc. designed and supervised a treatment protocol to eradicate invasive quagga mussels from the lake at Billmeyer Quarry in Pennsylvania.  The treatment consisted of 3 separate applications of a liquid formulation of ionic copper called EarthTec QZ, delivered over a period of 37 days.  Mussel mortality was determined through use of caged adult mussels that were suspended at different locations and depths throughout the lake.  Mussels began to die within 3 days of the initiation of treatment, particularly in the top 20 feet of the water body.  The death of the last caged mussel was confirmed 40 days after the initiation of treatment, in a cage that had been placed at a depth of 30 feet below the surface.  Both biological and physicochemical data collected during the treatment period revealed that there was a pronounced thermocline at 25-35 foot depth.  Such stratification is historically typical for this lake.  The layer of water in the thermocline resisted mixing, which explains why mussels located above and below the thermocline were eradicated quickly, yet those within the thermocline required targeted treatment techniques and 40 days to succumb to 100% mortality.  Microscopic analysis of plankton tows and visual inspection of the shoreline after partial pump-down of the quarry in early November indicated that all veligers and adults were successfully exterminated.  Analysis of eDNA taken in December 2017 also suggests the eradication was complete.  The cumulative sum of copper applied throughout the entire course of treatment totaled 0.44 mg/L – noteworthy because it is less than half the concentration EPA allows (1.0 mg/L) in a single algaecide treatment.  The authors are cautiously optimistic that this is the first recorded instance of eradicating quagga mussels from an entire lake.

Tuesday January 29, 2019 1:40pm - 2:00pm EST
CENTER STREET ROOM A

3:20pm EST

(CANCELLED) (SYMPOSIA-11) Avoidance Behavior of Cold-, Cool-, and Warm-water Fish Species to Zequanox®, a Biopesticide for Dreissenid Mussel Control
AUTHORS: Matthew T. Barbour, James A. Luoma, Todd J. Severson, Jeremy K. Wise – US Geological Survey

ABSTRACT: Zequanox® is an EPA-registered molluscicide for controlling populations of dreissenid mussels (zebra and quagga mussels). Zequanox® has demonstrated selective toxicity to dreissenid mussels. However, recent research indicates Zequanox can impact body condition and even cause mortality in non-target species.  We assessed the avoidance behavior of two species each of cold-, cool-, and warm-water fish (lake trout, brook trout, lake sturgeon, yellow perch, and fathead minnow) to Zequanox® at the maximum concentration allowed by the product label (100 mg A.I./L).  Naïve, juvenile fish were individually (n = 30) observed in a two-current choice tank through which treated and untreated water flowed simultaneously on either side.  Each individual fish was observed during a control period (20 min) with no treatment and two treatment periods (20 min each) between which the treated side was alternated to eliminate bias.  Positional data was collected and tabulated in real time with EthoVision® XT software.  Zequanox® concentrations and water quality (pH, dissolved oxygen, temperature, and specific conductance) were monitored during each trial.  Results from this research will help inform resource managers of the likelihood of fish to avoid Zequanox® treated areas, thereby assisting in the establishment of treatment-related risk assessments.

Tuesday January 29, 2019 3:20pm - 3:40pm EST
CENTER STREET ROOM A
 
Wednesday, January 30
 

10:20am EST

(FISHERIES: TECHNIQUES) Using Measures of Precision and Catch to Estimate Sample Size Required to Meet Sampling Objectives for Standard Sport Fish Assessments
AUTHORS: Stephen M. Tyszko, Jeremy J. Pritt, Joseph D. Conroy –Ohio Division of Wildlife

ABSTRACT: Using standard sampling methods for sport fish assessment allows powerful comparisons across time and space, if sample size is adequate. Biologists have begun evaluating precision and catch of sport fish surveys using North American standard methods (NASM) and have used resample methods to estimates sample sizes required to meet precision and catch objectives. The Ohio Division of Wildlife has collected standard sport fish surveys since 2003, providing an opportunity to further understand the performance of these methods. We evaluated relative standard error (RSE) and catch of stock-length individuals for NASM Largemouth Bass Micropterus salmoides electrofishing surveys  and NASM crappie (Pomoxis spp.) fyke net surveys in Ohio reservoirs 2003–2017.  We then used resampling methods to estimates sample sizes required to meet two sampling objectives: (1) for CPUE, achieve an RSE = 25; and, (2) collect at least 100 stock-length fish. We found that Largemouth Bass and crappie surveys generally met sampling objectives.  Resample analysis showed that the median number of samples required to meet objectives for Largemouth Bass surveys was 12 or fewer and the median for crappie surveys was 20 or fewer.  Our results support literature that shows NASM electrofishing can be used to obtain precise Largemouth Bass samples that meet catch objectives with a reasonable sample size.  Our crappie survey results contrasted literature that shows NASM fyke net methods required prohibitively large sample sizes to meet precision and catch objectives.  This analysis advances our understanding of sample size requirements for standard methods and highlights the importance of estimating sample size when designing standard surveys. Furthermore, we propose a standard resampling method for estimating sample size requirements.    

Wednesday January 30, 2019 10:20am - 10:40am EST
CENTER STREET ROOM A

10:40am EST

(FISHERIES: TECHNIQUES) Use of Lake Michigan and Indiana Standard Trap Nets to Collect Crappie: A Comparison of Catch, Size Structure, and Cost Effectiveness
AUTHORS: Andrew Bueltmann, Sandra Clark-Kolaks – Indiana Department of Natural Resources

ABSTRACT: Two entrapment gears, the Indiana Standard trap net (INS) and the Small Lake Michigan trap net (LM), were compared to evaluate which was more efficient and more cost effective for collecting Crappie. Gears were deployed randomly at four total lakes, one in 2017 and three in 2018. Efficiency was measured by effort needed to collect a similar sample size between gears along with time required to run both nets. Further, cost effectiveness was measured by the individual cost of both nets and the number of cheap nets which could be purchased for the more expensive net. Specifically, a single LM costs ~$4,500 and a single INS costs ~$500; therefore, nine INS could be purchased for one LM. Cost effectiveness was then calculated as the ratio of estimated catch:estimated labor time to run the necessary number of nets so that individual costs were equivalent (i.e., one LM to nine INS). The larger the ratio, the more cost effective the gear type. All lake data were pooled for analysis and indicate that size distribution between nets does not differ and mean overnight catch rates were nearly triple the amount higher for LM (14.8) than INS (5.6). Further, labor time required to achieve equivalent catch rates were as follows: one LM net (~9.8 to 60.4 mins to run) to three INS nets (~10.5 to 58.8 mins to run). Although mean overnight catch rate was higher for LM, cost effectiveness indicates little to no difference between the gears with INS (0.7) being slightly more cost effective than LM (0.5).

Wednesday January 30, 2019 10:40am - 11:00am EST
CENTER STREET ROOM A

11:00am EST

(FISHERIES: TECHNIQUES) Evaluation of Gill Net Design to Sample Fishes in Kansas Impoundments: Year Two
AUTHORS: Nick Kramer, Kansas Department of Wildlife, Parks, and Tourism

ABSTRACT: Gill nets are one of the most popular gears implemented to assess fish populations in North America. Ease of construction and low maintenance has led to their success and widespread implementation in the field of fisheries management. The characteristics of a gill net, along with the size and shape of the fish affect how capture occurs (i.e., wedging, gilling, tangling, or a combination). Many studies have been completed on selectivity of various sizes of mesh. Despite the importance of mesh size, the shape of the mesh can also be altered by modifying the hanging ratio which in turn will affect the catchability of fishes with differing body shapes. Additional studies have demonstrated the effectiveness of hobbling or tying down gill nets. This creates more of a “baggy” net which studies have shown to capture a wider size range of fish and may increase catches of species that could easily become tangled due to external protrusions (e.g., Channel Catfish or Paddlefish). In recent years, Kansas Department of Wildlife, Parks, and Tourism biologists have become interested in managing Blue and Flathead Catfish and have placed an increased priority on sampling these species; however, the biologists currently have little insight into fully representative population parameters due to standardized sampling gear that does not capture larger individuals. Thus, the objective of this study is to evaluate the effectiveness of various gill net designs to sample fish populations in Kansas impoundments with special consideration given to species of interest for biologists (e.g., Blue Catfish, Flathead Catfish). Year one of this study found differences in catch rates for some commonly assessed species. These differences were further examined in year two of the study by expanding the sample size; in both number of sets and number of reservoirs.

Wednesday January 30, 2019 11:00am - 11:20am EST
CENTER STREET ROOM A

11:20am EST

(FISHERIES: TECHNIQUES) Comparison of Hydroacoustic Survey Designs for Coldwater Forage Assessment in a Missouri River Reservoir
AUTHORS: Nicholas B. Kludt, South Dakota State University; Mark J. Fincel, South Dakota Game, Fish & Parks; Brian D.S. Graeb, South Dakota State University

ABSTRACT: Rainbow Smelt Osmerus mordax and Cisco Coregonus artedi are the primary coldwater forage species in Lake Oahe, South Dakota. Understanding the dynamics of these species is an important aspect of Walleye Sander vitreus and Chinook Salmon Oncorhynchus tshawytscha management. As these coldwater species are pelagic and heterogeneously distributed throughout the stratified reservoir zone, they have been historically surveyed using hydroacoustics. Hydroacoustics offers the ability to efficiently survey large areas, but can be time consuming. We compared the traditional cross-sectional transects (2.5 ± 0.8 km) with an abbreviated longitudinal transect (0.5 ± 0.0 km) survey, using a paired design replicated over three months and two years (n=97). We then analyzed the observed target densities of Rainbow Smelt and Lake Herring using a mean square error (MSE) approach. Observed densities were highly correlated for both Rainbow Smelt (r = 0.91) and Cisco (r = 0.94). Decomposing MSE revealed random error components of 67.3% and 99.7% of Rainbow Smelt and Cisco, respectively, indicating no systemic differences between the paired estimates. In either case, estimates were statistically comparable to a 1:1 line with a zero intercept, indicating high observational agreement. These results show no discernible difference between survey designs. While travel time between sites remains constant, the difference between longitudinal (6 min) and cross sectional (30 min) transect scanning times equates to an 80% time savings (1 hr, 42 mins vs. 8 hr, 38 mins). We therefore recommend the adoption of the longitudinal design for future standardized sampling of Lake Oahe coldwater stocks.

Wednesday January 30, 2019 11:20am - 11:40am EST
CENTER STREET ROOM A

11:20am EST

(HUMAN DIMENSIONS: FISHERIES 2) Successes and Limitations of a Roving-access Angler Survey Design to Increase Numbers and Frequency of Reservoirs Surveyed in Ohio
AUTHORS: Kevin S. Page, Ohio Division of Wildlife

ABSTRACT: Reservoirs in Ohio are surveyed annually by the Ohio Division of Wildlife (ODOW) to collect fishery-relevant information on angler effort, catch, and harvest. Historically, the ODOW conducted roving-access site angler creel surveys on weekdays and weekends during the months of April–September. However, the costs associated with conducting these intensive surveys limited the number of locations surveyed annually (0–5). In 2004, a new angler survey design was implemented that only targeted periods of greatest overall and directed angler effort (May–July, weekends), thereby decreasing the number of surveys at any one reservoir but increasing the number of reservoirs surveyed. This design has been instrumental in increasing the spatial and temporal extent of angler surveys. As of 2016, more than 300 angler surveys have been conducted at more than 100 reservoirs. To validate that the “targeted” survey design continues to provide useful fishery metrics, intensive angler surveys (March–November, weekdays and weekends) were conducted at four reservoirs during 2017. This full extensive dataset was compared to a subset representing the typical high-use survey. Overall, the “targeted” strategy continues to effectively monitor overall angler effort and catch, but may miss the peak periods (spring and fall) for certain fisheries.

Wednesday January 30, 2019 11:20am - 11:40am EST
VETERANS MEETING ROOM C/D