Welcome to the interactive web schedule for the 2019 Midwest Fish & Wildlife Conference! Please note, this event has passed. To return to the main Conference website, go to: www.midwestfw.org.
For tips on navigating this schedule, click HELPFUL INFO below.
CONFERENCE SCHEDULE UPDATES & CHANGES: As a result of the prolonged government shutdown, we experienced a number of cancellations and changes to the schedule. Cancellations and changes are listed here (as of January 26, 2019).
AUTHORS: Michael Redmer, Michael J. Dreslik, Eric T. Hileman – U.S. Fish and Wildlife Service
ABSTRACT: One of the most consistently cited threats to the Eastern Massasauga rattlesnake (EMR), even on protected lands, is the loss of preferred habitat (sunny, gramminoid-dominated plant communities) to succession from woody plants and invasive species. The EMR is a conservation or management reliant species, and preferred management techniques (e.g., prescribed fire, mowing, and brush removal) converts and maintains preferred habitat. Life history studies indicate EMR populations can be sensitive to even small amounts of additive mortality, and crucial habitat management actions such prescribed fires present risks. Risks are especially apparent when actions are implemented during periods where populations are most concentrated and vulnerable, such as spring egress, thus creating a paradox amongst habitat and population needs. Development of recovery implementation strategies will require monitoring to: (1) ensure habitat goals and responses are being achieved, and (2) populations of the EMR respond positively, both in an adaptive management framework. A monitoring protocol initially developed for the U.S. Fish and Wildlife Service, and then modified/implemented by the Illinois Natural History Survey (1999-present) and others, is now or will soon to be used to monitor at least six EMR populations in four states. The protocol gathers data on relative abundance, individuals within monitored EMR populations, and a suite of habitat variables. We propose that mplementing the protocol at additional select EMR sites where habitat management is planned could be done relatively inexpensively and would allow a direct comparative approach to monitoring range-wide EMR recovery.
Monday January 28, 2019 10:20am - 10:40am EST
HOPE BALLROOM B
AUTHORS: Matthew C. Allender, Ellen Haynes, Marta Kelly – Wildlife Epidemiology Laboratory, University of Illinois; Sarah J. Baker, Wildlife Epidemiology Laboratory and Illinois Natural History Survey, University of Illinois
ABSTRACT: Snake fungal disease (SFD), caused by the fungus Ophidiomyces ophiodiicola, emerged as a wildlife disease threat over the last 10 years and specifically may threaten the conservation of free-ranging Eastern Massasaugas. Historical records and museum collections have now indicated that SFD was present in some populations in Illinois at least a decade before its description in the literature. The disease syndrome involves clinical signs ranging from minor raised and thickened scales to severe crusts or ulcers on the head and body and can cause death in severe cases. The disease has been found to affect at least 31 snake species. As part of ongoing surveillance for SFD, the Wildlife Epidemiology Lab routinely tests samples for the presence of O. ophiodiicola using qPCR. Since 2013, we have tested over 2000 snake samples from 69 species. In total, 616 positive samples have been recorded across 31 species in 11 states. Despite the apparent sensitivity of pit vipers, only 12.5% (n=99/693) of Eastern massasaugas (Sistrurus catenatus) were positive, whereas nearly 60% (n=218/365) of water snakes (Nerodia sp.) were positive for O. ophiodiicola. Host factors, such as hematology and protein electrophoresis have demonstrated individual Eastern Massasaugas respond immunologically, but the basis for disease protection is unknown. This presentation will synthesize historical and existing knowledge of SFD in Eastern Massasaugas and plans for future efforts. Characterizing the epidemiology of this disease can improve future surveillance and management efforts that may mitigate its effects on snake populations worldwide.
Monday January 28, 2019 11:00am - 11:20am EST
HOPE BALLROOM B
AUTHORS: Michael J. Dreslik, Illinois Natural History Survey; John A. Crawford, National Great Rivers Research and Education Center; Sarah J. Baker, Illinois Natural History Survey; Christopher A. Phillips, Illinois Natural History Survey
ABSTRACT: For effective conservation and recovery, an adaptive management framework is often best when paired with monitoring population-level responses. In many species, monitoring abundances over time using traditional capture-mark-recapture (CMR) methods is logistically challenging. N-mixture models are an extension of the occupancy and detection probability framework and can estimate abundances across multiple populations. The models use raw abundance counts taken during surveys, model the distributions of capture frequencies, incorporate density-dependent effects and can provide population estimates when recaptures are too few. When validated with traditional CMR estimates, they can provide robust estimates for multiple populations across the landscape. We chose to determine the effectiveness of an N-mixture modeling approach to generate population size estimates for the Eastern Massasaugas within the Carlyle Lake region in Illinois. Our results will be used to determine regional population trends and provide a foundation to assess the effectiveness of conservation actions.
Monday January 28, 2019 11:40am - 12:00pm EST
HOPE BALLROOM B
AUTHORS: Christopher A. Phillips, Sarah J. Baker, Michael J. Dreslik – Illinois Natural History Survey
ABSTRACT: Conservation and recovery of declining species are costly endeavors often forcing difficult decisions with limited conservation funds available. Therefore, having a firm understanding of the specific threats a species or population faces can afford the development of more targeted actions. Conservation actions focusing on the most severe threats might have the largest benefit, but they must be achievable, realistic, and measurable. Small population dynamics necessitate the protection of individuals in addition to larger-scale actions to secure the whole population. Over our long-term study of the Eastern Massasauga at Carlyle Lake, we have identified numerous threats to population persistence. We have consistently applied directed conservation actions and reassessed their utility in an adaptive framework. Herein we provide a summary of how we are combating the threats to the Carlyle Lake population through planning and implementation.
AUTHORS: Gregory Lipps, Jr., Nicholas Smeenk – Ohio Biodiversity Conservation Partnership, The Ohio State University
ABSTRACT: Once widely distributed throughout the glaciated portion of Ohio, the Eastern Massasauga is now extirpated at all but 12 sites in the state. As part of a statewide comprehensive conservation plan for the species, three meetings with resource managers and researchers were convened in 2017-2018 to document the status of each site and prioritize conservation activities. We developed a worksheet to record multiple metrics that describe the status of populations, habitat conditions, and changes to these values over time. Occupied Massasauga sites in Ohio can generally be described as having small populations (estimated mean of sites: 59 adults; range: 3-433) but high densities (mean: 5.75 adults/ha; range: 0.7-15). The amount of available herbaceous habitat at each site varies greatly, but is less than 28 ha for 75% of sites, with a mean of 51% of available habitat at each site known to be occupied (range: 1.5-100%). The greatest challenge to conserving known populations is maintaining herbaceous habitat through snake-friendly management techniques to control woody and invasive species. Recovery to more robust populations with predicted long-term viability will require expanding the amount of suitable habitat adjacent to occupied fields (which we have observed to be colonized at two sites) and investigating techniques for augmenting declining populations and repatriating snakes to suitable habitat.
AUTHORS: Stephanie A. Shaffer, Michigan State University; Henry Campa, III, Michigan State University; Daniel Kennedy, Michigan Department of Natural Resources; Gary Roloff, Michigan State University
ABSTRACT: The eastern massasauga rattlesnake (Sistrurus catenatus catenatus) is a federally threatened species ranging throughout the Great Lakes region. Conservation concerns for the species include declining availability of suitable areas due to habitat degradation and fragmentation. Our goal was to quantify habitat suitability for massasaugas using the Bailey (2010) habitat suitability index (HSI) model and validate this model throughout southern Michigan at 27 20-ha study sites. Sites were selected based on historical or current presence of massasaugas. Following methods described in the HSI model, in 2015 and 2016 we measured vegetation characteristics at 10 - 12 randomly selected locations within each site. As described by the HSI model, we quantified % live herbaceous cover (optimal suitability 60-100%), % dead herbaceous cover (51.5-96%), stem density of trees and shrubs > 3 m (0-58 per ha), basal area of trees and shrubs > 3 m (0-12.1 m2/ha), % area of early deciduous upland (0-57%), and % area of early deciduous wetland (23-73%). To validate the model, we used a resource selection probability function to identify disproportionate use by massasaugas of microhabitat structures defined as important for massasaugas by the HSI model (i.e., % live and dead herbaceous cover, number and average DBH of stems). Based on HSI modeling, habitat suitability rankings for massasauga locations compared to random locations throughout the study sites corroborated structures defined as “optimal” for the species by the HSI model. The resource selection probability function illustrated a positive relationship between massasauga use and the amount of live and dead herbaceous cover, and a negative relationship between use and the number and average DBH of woody stems. Our validation of the Bailey (2010) HSI model indicates that this habitat model is applicable when defining massasauga habitat throughout habitats of varying quality within Southern Michigan.
AUTHORS: Howard K. Reinert, The College of New Jersey; Lauretta M. Bushar, Arcadia University; B. Scott Fiegel, Ecological Associates, LLC; Brandon M. Ruhe, Mid-Atlantic Center for Herpetology and Conservation; Christopher A. Urban, Pennsylvania Fish and Boat Commission
ABSTRACT: Sistrurus catenatus in Pennsylvania has experienced a massive reduction in its distribution over the past 100 years, and it is now limited to four isolated populations. One of the greatest threats to these remaining populations is the succession of open, wetland and meadow habitat (previously maintained by cattle grazing and hay production) to forest. This study took an experimental approach to determine the efficacy of forest removal to re-establish suitable habitat. The study site selected had served as the site of the first telemetric field study of massasaugas in Pennsylvania from 1976-78. At that time the area supported a large population of snakes, and 28 ha of occupied habitat. By 2012, maturation of conifer plantation plantings and encroaching deciduous hardwood forest had reduced the area of open habitat to 2.5 ha. During the winter of 2012, 10 ha of forest was convert to open habitat by a combination of commercial logging, mulching of woody debris, and seeding with native grasses and forbs. Radio tracking of snakes began one year prior to habitat restoration (Spring 2012) and continued for three years after initial restoration activities (to Fall 2015). A total of 24 male, non-gravid female, and gravid female massasaugas were monitored. Prior to restoration activity (2012) and immediately following forest removal (2013) snakes did not utilize the newly altered habitat. In 2014, 9 out of the 15 monitored snakes used the restoration area, and 36.5% of all observations were in the restored habitat. In 2015, all 6 monitored snakes used the restoration area, and 52.5% of all observation were in the restored habitat. Successful foraging, mating, gestation, and overwintering were observed in restored habitat indicating that the restoration successfully re-created suitable habitat. The observations further indicate that massasaugas had the ability to rapidly locate and utilize newly created habitat.
AUTHORS: Christine Proctor, Albert Sarvis – Harrisburg University of Science and Technology
ABSTRACT: Once a widespread and common snake, the eastern massasauga (Sistrurus catenatus catenatus) is protected in every state where it currently occurs and is listed as threatened under the US Endangered Species Act. The use of drones to count wildlife is increasing, however they are primarily used to quantify conspicuous endothermic species. This ongoing study is exploring the potential of drone mounted thermal imaging to increase detection of this cryptic reptile. We hypothesized that thermal imaging captured via a remotely controlled drone will increase our ability to accurately quantify eastern massasauga populations, as compared to more traditional methods. A thermal sensor mounted to a drone was manually flown over a 20-acre managed prairie with a confirmed population of eastern massasaugas in a systematic pattern at an elevation of 10 meters, providing a ground resolution of 1.85 centimeters. Two controllers were used, allowing one person to focus on flying the drone while the other closely monitored the imagery. A third person was directed to the location of a suspected snake for visual confirmation. Once visual confirmation was made, we collected temperature data for both the snake and the ambient environment using a laser thermometer. This allowed for an increased understanding of the minimal temperature difference between the snake and ground required for detection, helping to set target temperature ranges and improve overall detection. During this process we also collected data on thermal signatures of non-snake items such as small mammals, branches, ant hills, and water, helping to train observers on how to interpret the imagery at a higher accuracy. The results from this study have the potential to improve the accuracy of data collection, influencing the future of cryptic reptile detection.
AUTHORS: Crystal Robertson, Andrew Lentini, Rick Vos – Toronto Zoo
ABSTRACT: Much of the habitat for Eastern massasauga rattlesnakes in Ontario is held under private ownership. While the value of engaging private landowners in massasauga conservation has long been recognized, many general education efforts have limited on-the-ground impact. The Toronto Zoo has been involved with massasauga conservation since the 1980s through assurance population management and the development of various outreach resources. The type of messages shared with the public has evolved over time and increasingly requests are fielded about roles played by individual landowners in conserving massasaugas. Over the past four years, Toronto Zoo redeveloped our education materials and landowner engagement offerings to better meet these needs. We now design personalized habitat management guidelines for landowners to enhance their stewardship role. This initiative involves reaching out to landowners through our network of partners and arranging for Zoo staff to gather information on resident snakes during site visits to private properties. The habitat management guidelines offer information on areas of seasonal massasauga activity allowing landowners to plan activities, such as selective tree harvesting, at times that minimize impacts on resident snakes. The guidelines also identify potential habitat enhancement or restoration activities that landowners can undertake with Zoo support. An updated suite of outreach products has been developed to support this initiative and allow participating landowners to spread the word about massasauga conservation. We also utilize visual storytelling in a new video with messaging about massasauga status in Ontario, relevant stewardship actions and local projects being undertaken to support its recovery. With its accompanying resources, the program now engages the public in safe and relevant actions that reinforce their role in species conservation while developing a new generation of advocates for coexisting with Ontario’s only venomous snake.
AUTHORS: Nathan Kudla, Grand Valley State University; Eric McCluskey, Grand Valley State University; Jen Moore, Grand Valley State University
ABSTRACT: Populations with low gene flow can become negatively influenced by increased levels of inbreeding, lower genetic diversity, and reduced adaptive potential. Landscape genetics allows for spatial and genetic information to be analyzed simultaneously to better understand how the landscape influences gene flow. This information is then used to estimate population connectivity and identify landscape features which act as barriers or promoters of gene flow. The eastern massasauga rattlesnake (Sistrurus catenatus) is a federally threatened viper typically found in wetlands throughout the Great Lakes region. Due primarily to a loss of habitat, many remaining populations are small and isolated. This lack of connectivity brings into question the survival of these populations into the future. Unlike many other populations, the eastern massasauga rattlesnakes on Bois Blanc Island, Michigan live in a relatively undisturbed habitat with a potential for high connectivity across the 88 km<sup>2</sup> landscape. We used landscape genetics to estimate genetic connectivity of eastern massasauga rattlesnakes across Bois Blanc Island. 109 Individuals were genotyped at 16 microsatellite loci and pairwise genetic distances were calculated as the proportion of shared alleles (D<sub>ps</sub>). We used resistance surface modeling to assess how the island landscape is influencing gene flow. Our results will provide insight into how eastern massasauga rattlesnake populations function in areas with limited human presence and minimal landscape alteration and if population connectivity can be maintained across a well-connected landscape with high abundance.
AUTHORS: Eric McCluskey, Grand Valley State University; H. Lisle Gibbs, The Ohio State University; Scott Martin, The Ohio State University; Jennifer Moore, Grand Valley State University
ABSTRACT: The loss of genetic diversity in fragmented landscapes is a major concern for threatened and endangered species. Reductions in patch size and connectivity are expected to further erode genetic diversity for isolated populations. In order to preserve genetic diversity, most conservation efforts are focused on ameliorating the connectivity issue via corridor creation to promote gene flow. Addressing the potential loss of genetic diversity from a habitat perspective is less straightforward because the relationship between habitat area and genetic diversity has not been thoroughly investigated across taxa in the field of landscape genetics. We examined this relationship for a federally threatened species, Eastern Massasauga Rattlesnake (Sistrurus catenatus), that is largely restricted to isolated populations making loss of genetic diversity a pertinent management issue. We obtained genetic diversity data from populations across the range that varied in habitat amount and land use history. A subset of these are in states (IL, MI, and OH) with historic land cover datasets, derived from Public Land Surveys conducted prior to most land alterations associated with European colonization and expansion. We evaluated the relationship between various habitat metrics and genetic diversity across multiple spatial and temporal scales. Across the range, genetic diversity does not appear to be directly related to habitat area at the patch level within contemporary environments. We did detect a lasting genetic signal from historic habitat levels at a broad scale. Populations with high habitat area estimates from the 1800s exhibited moderate to high genetic diversity, despite dramatic habitat loss in some cases. These results demonstrate a certain degree of genetic resiliency among historically robust populations. Hence, even small, remnant populations may still harbor allelic diversity that could be maintained with proactive habitat management to boost population size and connectivity.
AUTHORS: William Peterman, Andrew Hoffman, Annalee Tutterow – Ohio State University
ABSTRACT: Temperature is of paramount consideration for ectothermic animals. Numerous studies have previously described multiscale habitat selection and use in timber rattlesnakes (Crotalus horridus). However, there is currently limited understanding of how habitat use and selection are related to the thermal landscape. The primary objectives of this study are to understand how the thermal landscape is affected by land use and forest management, and how spatial and temporal habitat use by timber rattlesnakes relates to the thermal landscape. To create a down-scaled near-surface air temperature model, we deployed remote temperature loggers across our focal landscape in Southeast Ohio. We then used fine-scale LiDAR data to derive spatial topographic surfaces as well as surfaces describing forest structure. Using these models, we related the predicted spatial-temporal air temperatures to field observations of radio telemetered snake locations, as well to snake body temperature data collected using internal temperature data loggers.Our near-surface air temperature and snake body temperature models both fit the data well with high predictive power. Unsurprisingly, we found that gravid females, on average, occupied areas of the landscape with higher temperatures than non-gravid snakes. We have observed large differences in parturition dates in our population. Females that give birth earlier in the summer are occupying areas that are warmer than areas occupied by females that give birth later in the summer. Our study provides a novel perspective of habitat use in timber rattlesnakes, and adds to the limited knowledge of timber rattlesnake ecology in the Midwest. A clear understanding of the landscape features affecting near-surface air temperatures and the spatial thermal ecology of timber rattlesnake has the potential to facilitate more effective and targeted habitat management.
AUTHORS: Alex Ochoa, Michael Broe, H. Lisle Gibbs – Ohio State University
ABSTRACT: Small isolated populations of endangered species can experience genetic costs through the loss of adaptive variation and/or the accumulation of deleterious mutations through genetic drifts. The endangered Eastern Massasauga Rattlesnake (Sistrurus catenatus) occurs in isolated populations with small effective sizes throughout its range in the U.S. and Canada, but little is known about the levels of adaptive genetic variation in existing populations. Here, we used DNA capture probes and Next Generation Sequencing to assess the genetic diversity of venom genes in 93 Eastern Massasauga Rattlesnakes from 12 populations in Ohio, Pennsylvania, New York, Illinois, and Ontario. Specifically, we characterized the genetic diversity of genes encoding PLA2, BPP, CRISP, SVSP, and SVMP venom proteins, as well as an additional set of ~1400 non-toxin and neutral loci. Within populations, we find that variation—defined as the presence of nonsynonymous single nucleotide polymorphisms in venom genes—is common and not related to effective population sizes, as determined from neutral genetic markers. This suggests that small populations of this species still retain high levels of adaptive genetic variation despite the impact of strong genetic drift. In contrast, levels of population divergence in toxin and non-toxin loci are similar, thus making the roles of selection versus genetic drift in maintaining population differences in venom gene alleles uncertain. Broadly, we discuss the implications of our results for management activities for this endangered snake from a conservation genetics perspective.
AUTHORS: Gregory Lipps, Jr., Nicholas Smeenk – Ohio Biodiversity Conservation Partnership, The Ohio State University
ABSTRACT: The Eastern Hellbender is a large, completely aquatic salamander that inhabits lotic waters, spending most of its life under large rocks. Surveys from 2006-2009 found that the relative abundance of Hellbenders in Ohio declined by over 80% with most populations having reduced recruitment of young. A diverse group of individuals representing state and federal wildlife and environmental agencies, zoos, soil and water conservation districts, and academic researchers have met regularly for the past decade under the umbrella of the Ohio Hellbender Partnership to develop and implement plans to recover the species and its habitat. Since 2011, we have collected eggs from 27 nests for head-starting in biosecure facilities, resulting in the release of 960 individuals into Ohio waterways. While water quality in the state greatly improved after the passage of environmental legislation in the early 1970s, increases in sedimentation and conductivity still pose major impediments to maintaining suitable habitat and establishing self-sustaining populations, especially in areas of increased oil and gas exploration. While the future of the Hellbender in Ohio is far from certain, the diverse partnership has become a model for addressing the multitude of challenges associated with the recovery of endangered species.
ABSTRACT: The wetlands that support amphibian breeding and habitat functions are being lost at a much higher rate than wetlands of other types. This is true for both urban and rural landscapes. These damages do not always directly impact the wetlands themselves but instead involve solely large-scale degradation of the habitats surrounding the wetlands. However, both direct and indirect impacts are debilitating to the wetlands’ amphibian communities. Additionally, far too often the lost amphibian community functions of wetlands are not being replaced through compensatory wetland mitigation or other wetland restoration and enhancement projects. Restoring wetland amphibian functions requires many considerations. By far, the most important factor is the location of the replacement wetland and ensuring there is the ability for it to interact with nearby surrounding habitat features that are supportive of wetland amphibian communities. Sites should be targeted toward areas where adjoining intact, high quality vernal pools are present and there is the ability to restore wetlands on surrounding hydric soils. Additionally, it is important to incorporate the attributes displayed by the area’s best remaining vernal pools in the restoration wetlands. These habitat components include seasonal hydroperiods, shallow slopes to the pools, supportive microtopographic features, and establishing connection to natural vernal pools, and their forested surrounding habitats, through reforestation. In the end, high quality complexes of forested landscapes that contain fully functional vernal pools, with exceptional amphibian communities, will result when the above considerations are the basis for wetland restoration and enhancement projects.
AUTHORS: Matthew D. Stephenson, Lisa A. Schulte – Iowa State University Department of Natural Resource Ecology and Management; Robert W. Klaver, U.S. Geological Survey, Iowa Cooperative Fish and Wildlife Research Unit
ABSTRACT: Grasslands in the Midwest United States have seen a precipitous decline over the last 150 years, resulting in the loss of millions of acres of habitat for wildlife. A large majority of the land in the Midwest is privately owned and efforts to restore habitat on large scales will have to include partnerships with private landowners. Contour buffer strips of diverse native prairie planted in row crop fields have been demonstrated to be very effective at reducing nutrient and soil runoff and may also serve as a significant area of habitat for wildlife such as reptiles and small mammals.From 2015-2018 we investigated reptile and small mammal occupancy in contour buffer strips of diverse native prairie and other on-farm habitat patches on 15 sites in Iowa, USA. We placed plywood artificial cover objects in perennially vegetated conservation features on farms and checked them between 4-20 times each year from April-October. We modeled patch occupancy in Program MARK to test if landscape variables such as patch size, fragmentation, connectivity, and vegetation diversity predicted occupancy for several species of reptiles and small mammals. We also modeled potential nuisance variables such as time-of-year, time-of-day, and weather that could affect detection probability. A greater understanding of how these less-frequently studied taxa utilize on-farm habitat could aid managers and policy makers to help make agricultural conservation programs effective for conserving as many taxa as possible.
AUTHORS: Callie Klatt Golba, Department of Biological Sciences, Northern Illinois University; Gary Glowacki, 2Natural Resource Division, Lake County Forest Preserve District; Richard B. King, Department of Biological Sciences, Northern Illinois University & Institute for the Study of the Environment, Sustainability, and Energy, Northern Illinois University
ABSTRACT: Blanding’s Turtles (IUCN Endangered) are long-lived reptiles with delayed sexual maturity. Population viability analyses (PVAs) are useful tools for such species because they allow the comparison of conservation strategies over time frames that would not be possible experimentally. Accurate demographic parameter estimates are essential for reliable projection of effects of management on populations. For Blanding’s Turtles, we lack accurate estimates of juvenile survival because younger age classes are infrequently encountered and recaptured. The Lake County Forest Preserve District (LCFPD) in northeastern Illinois initiated a long-term capture-mark-recapture (CMR) project in 2004. Since 2010, LCFPD has released 879 headstarted turtles, 316 of which have been recaptured in one or more successive years. These 14 years of intensive monitoring have provided us with a unique dataset from which we estimate the survival of juvenile turtles. Using encounter histories of headstarted animals, we estimate age-specific survival rates by employing Cormack-Jolly-Seber (CJS) modelling techniques. Furthermore, by comparing size and growth trajectories of headstarted animals with those of known-age wild-born juveniles (93 unique individuals, 39 of which have been recaptured), we meaningfully apply age-specific survival estimates to wild animals. Together with other demographic information from this population (adult survival, fecundity), we anticipate more accurate population projections that will aid in evaluating conservation strategies for this population and potentially for Blanding’s Turtles elsewhere.
AUTHORS: Jay Vecchiet, Richard B. King – Northern Illinois University
ABSTRACT: Agencies across the United States rely on data driven management practices. Whether or not those practices are successful can be ambiguous because variables other than management also shape population and community responses. Here, we test whether the effects of preserve size, preserve land cover, surrounding land cover, habitat quality, and management history have a detectable effect on species richness. We focus on amphibians and reptiles in grassland-dominated preserves in northern Illinois. Species lists were compiled for 15 preserves ranging in size from 7 ha to 1460 ha. Habitat quality and land cover (open water, wetland, grassland, wooded, agriculture) of all preserves were analyzed using ArcMap 10.4.1. Preserves were also classified by age, prior land use, and intensity of management actions (seeding, prescribed fire, chemical and mechanical controls). Across preserves, a total of 31 amphibian and reptile species were documented, including 8 frogs and toads, 2 salamanders, 2 lizards, 6 turtles, and 13 snakes. Of these, 7 are considered Endangered, Threatened, or Species in Greatest Conservation Need in Illinois. As management is carried out, there are obvious positive effects on the environment (soil composition, plant communities, water quality), but demonstrating a positive effect on organisms with cryptic life histories, such as amphibians and reptiles, is challenging.
AUTHORS: Katherine Wright, Crystal Robertson, Paul Yannuzzi, Shannon Ritchie, Andrew Lentini, Bob Johnson, Rick Vos – Adopt-A-Pond Wetland Conservation Programme, Toronto Zoo
ABSTRACT: A head-start program for Blanding’s turtles (Emydoidea blandingii) was launched in 2012 by Toronto Zoo’s Adopt-A-Pond Wetland Conservation Programme and partners in an effort to recover a local population in the Rouge National Urban Park (RNUP). As per a Population Viability Analysis (PVA) in 2013, reaching a self-sustaining population required raising 50 turtles per year for two years each at a 60 female: 40 male ratio over 20 years. The head-start turtles are incubated and raised in a protected zoo environment, which includes a month in outdoor enclosures to acclimate to natural conditions. Then, a soft-release enclosure is used with half of the cohort for in-situ to acclimate to their new wetland prior to release into the wild, while a hard-release method is used for the other half (no in-situ acclimation). The release site is known habitat for Blanding’s turtles and is in close proximity to travel corridors, though many head-start turtles remain in the wetland area in which they were released. No significant difference has been observed between home ranges of soft- and hard-release turtles. The number of turtles released per cohort has increased each year (2014: 10, 2015: 21, 2016: 36, 2017: 49, and 2018: 49), as have cumulative survival rates (2018 data is still being incorporated). Survival, movement, and habitat use patterns are monitored by radio tracking a subset of turtles from each release cohort, which occurs three times per week from May-August and once per month from December-April. The number of tracked turtles from each cohort changes yearly as more turtles are released. In 2018, a total of 48 turtles were tracked out of the 165 that have been released to date. This long-term project will use adaptive management to improve husbandry, field research, habitat restoration and community outreach as the project progresses.
AUTHORS: Nicholas A. Smeenk, Gregory J. Lipps, Jr. – Ohio Biodiversity Conservation Partnership, The Ohio State University; Caleb Wellman, USDA, Animal Plant and Health Inspection Service, Wildlife Services
ABSTRACT: Meso-predatorsare primary predators of turtles and may obtain unnaturally high densities due to human subsidies. Predation by such predators may be more prevalent for turtle nests, which can be especially detrimental when nesting sites are concentrated. Persistent nest predation often results in a skewed population structure dominated by large adults due to reduced recruitment. Meso-predator control efforts during the nesting season have occurred yearly since 2011 at several important turtle sites in northern Ohio. At a northeast Ohio fen, we compared size distribution and sex ratios of Spotted Turtles among survey efforts from 2007 to trapping efforts in 2017 – 2018 to assess the demographic response of Spotted Turtles to removal of meso-predators. We used a Lincoln-Peterson population estimate with a Chapman modifier to estimate the turtle population size and density in 2017 – 2018. From 2011-2016, 115 raccoons (Procyon lotor) and 7 Virginia opposums (Didelphis virginiana) were removed along a railroad bed where turtles frequently nest. While the turtle sex ratio did not differ, we found a significant shift in the size distribution between the two time periods resulting from the capture of juveniles in 2017-2018, but not in 2007. A similar size distribution was observed in Painted Turtles (Chrysemys picta). We estimated the population size to be 28 individuals (95% CI: 19 - 37), resulting in a density estimate of 22 individuals/hectare. The shift in size distribution and similarity to a conspecific turtle species, suggests that meso-predator control efforts have mitigated predation of nests and/or young, resulting in increased recruitment in the population examined in this study. Further, the estimated population density is high relative to other populations. These results suggest a healthy population with yearly recruitment and evolutionarily stable sex distribution as a result of continued predator control efforts during the nesting season.
AUTHORS: Ethan J. Kessler, Illinois Natural History Survey, University of Illinois; Kurt T. Ash, Samantha N. Barratt, Eric R. Larson – University of Illinois; Mark A. Davis, Illinois Natural History Survey
ABSTRACT: Secretive aquatic animals are often particularly difficult to sample via traditional methodologies, especially when coupled with low population densities. Alligator snapping turtles (Macrochelys temminckii) are a fully aquatic chelonian endemic to the southeastern United States. At the northern extent of their range (i.e. Illinois and Indiana) this species is rarely encountered, and many records are chance encounters reported by citizen scientists. M. temminckii receive state-level protection throughout the bulk of their range and are currently under consideration for federal protection. As a consequence, documenting their occurrence across their range is a conservation imperative. Environmental DNA (eDNA) techniques detect DNA shed by animals into the environment to determine whether a species inhabits an area of interest. Due to their low detection probability at the edge of their range, eDNA may present a cost-effective method for M. temminckii surveys. We used an ongoing M. temminckii reintroduction in Illinois to test the efficacy of eDNA methods to determine detection limits using radio-telemetered individuals. Water samples were taken from known turtle locations, as well as random locations upstream and downstream from turtles. M. temminckii eDNA detections were positively correlated with turtle presence but showed limited downstream transport. Results from the Illinois methods-testing were applied to an eDNA survey of M. temminckii in two watersheds in Indiana, identifying locations with potential M. temminckii presence. Our results demonstrate that eDNA may be a viable means of detecting M. temminckii and could be utilized to better target areas to focus traditional sampling efforts.
AUTHORS: Jeremy M. Rayl, Marta Kelly, Michelle Beermann, Matthew C. Allender – Wildlife Epidemiology Laboratory, College of Veterinary Medicine, University of Illinois Urbana-Champaign
ABSTRACT: Eastern box turtles (Terrapene carolina carolina), a declining species across most of its range, are threatened by disease events including ranaviral disease, mycoplasmosis, and herpesviral infections, but individual host hematologic responses are largely unknown. At a site with known amphibian and box turtle ranavirus outbreaks, a cohort of eastern box turtles (N=36) was investigated using radio telemetry. Location and temperature data were collected over two active seasons and brumation periods (2016-2018). Bi-weekly, turtles were sampled for blood and oral-cloacal swabs for hematology and pathogen detection. All turtles were negative for ranavirus over the study period. Total white blood cells, heterophils, lymphocytes, eosinophils, and monocytes were greater in females compared to males. Total solids, total white blood cells, heterophils, and lymphocytes showed decreasing patterns in both sexes during the active season. Home ranges and average daily movement were not significantly predicted by hematology or pathogen detection. These data add to the long-term health monitoring of eastern box turtle populations in central Illinois. With repeated measures, we have an increased ability to find complex spatiotemporal relationships between box turtle movement, hematology, and pathogens. In conjunction with long-term cross sectional surveys, a more complete picture of box turtle health related to these variables can be developed with this site as an example within central Illinois.
AUTHORS. Katherine Novak, Heather Waye – University of Minnesota Morris
ABSTRACT. Coloration is a crucial tool among amphibians for defense, for thermoregulation, and for mating. However, not much is known about how coloration is determined. One of the major pigments found in amphibian skin are carotenoids, which have two important uses. They largely make up the orange/yellow coloration in amphibian skin cells or can be metabolized into Vitamin A and other antioxidants. How amphibians either allocate these nutrients to become Vitamin A, or as part of their coloration, is a key tradeoff that potentially shows the individual’s status of health. If the individuals have access to excess food, they will have enough carotenoids to invest in brighter coloration. This leads to the question of whether increasing their access to carotenoids through diet would allow them to allocate more carotenoids into their pigmentation. Using twelve Eastern Tiger Salamanders (Ambystoma tigrinum) who have been individually housed at University of Minnesota Morris and six were offered a fish diet that they had been eating before the experiment as a control. The other six were offered a carotenoid enhanced krill for a total of eight weeks. Each salamander was photographed each week under the same light setup with a color standard. Before and after photographs for each salamander were compared with a color analysis R program. A significant increase in the yellow coloration of the experimental salamanders without a similar increase in control salamanders will indicate that the carotenoids obtained through diet were used for pigmentation.
AUTHORS. Arin Thacker, Jennifer Moore – Grand Valley State University
ABSTRACT. Complete knowledge of a species’ distribution and geographic extent are both critical variables in making informed and effective conservation and management decisions. A common source of error in delineating a species’ geographic extent is through false absences (not detecting the species when it is there), which commonly occur in species with low detection probabilities. Occupancy modeling is a technique that predicts the proportion of area a species of interest occupies, while accounting for species and survey-specific detectability, using repeated surveys and presence-absence data. We used this technique to estimate the occupancy and detection probabilities of the federally threatened Eastern Massasauga rattlesnake (Sistrurus catenatus). Due to low detection, the status of many eastern massasauga populations is uncertain. We surveyed 31 sites, each with a previous record of a massasauga occurrence, across Michigan’s lower peninsula from May-September 2018. At each site we measured several aspects of the vegetation community to estimate occupancy probabilities. We also measured survey-specific environmental variables to estimate detection probabilities. The results of this study will aid in the management of massasaugas, by providing information to improve survey and detection, clarifying the status of unknown populations, and identifying habitat features that are associated with massasauga occupancy.
AUTHORS. Kaitlyn E. Seitz, Joshua C. Goble, Katrina M. Rosing, Richard S. Phillips – Wittenberg University
ABSTRACT. Eastern Box Turtles (Terrapene carolina carolina) have been the subject of much study given concerns over potential declines in population numbers. Urban populations of box turtles are often at increased risk of illegal collection, vehicle collisions, and habitat fragmentation. As part of an ongoing radio-telemetry study examining box turtle populations at two urban parks in southwest Ohio, we present data on both home range (11 box turtles) and movement on 19 box turtles. Box turtles for home range analysis were located opportunistically for an average of 30 (range 17-52) locations per turtle, covering an average of 886 days (range 405 - 1,315 days). Using the computer program Biotas, Samples sizes precluded comparisons of sex-specific home range data, but anecdotally our home range data support larger female home ranges using MCP (x¯<sub>female</sub>= 9.93 hectares, x¯<sub>male</sub>= 3.28 hectares). However, interpretation of home range generated using alternative techniques suggest females exhibit more disjunct habitat usage compared to males. Further, population monitoring show tremendous fidelity to both winter hibernacula and what appear to be nesting areas. Given our data, it appears that populations in both urban parks allow access to both over-wintering and nesting sites.
AUTHORS. Brianna L. Finnegan, David E. Koch – University of Dubuque
ABSTRACT. The purpose of this study is to test the impact of bait on trap success for freshwater turtles. Trapping was done on the Upper Mississippi River system using hoop nets. The different types of bait used were chicken, fish, sardines in soybean oil and a control trap containing no bait. Trapping was done in lentic parts of the river system. The two types of freshwater turtles most commonly found here were Chrysemrys picta (northern painted turtle) and Chelydra serpentine (eastern snapping turtle). We found that C. picta were caught more often in sardine baited traps, while C. serpentine preferred fish. These findings will help improve trap success for future researchers in hopes of improving trap success rates for freshwater turtles.
AUTHORS. Katrina M. Rosing, Madison T. Nadler, Abigail Henson– Wittenberg University; Michelle Comer, ODNR Division of Natural Areas and Preserves; Richard S. Phillips, Wittenberg University
ABSTRACT. The spotted turtle is found in disjunct populations in the Great Lakes region of the United States and Canada. Each state in the Midwest has afforded the species protection and, consequently, population monitoring is critical. To monitor turtle population in a southwest Ohio fen, we used minnow traps with and without spotted turtle decoys as well as trail cameras. During 2017, 12 spotted turtles were documented over 2,520 trap nights with a total of 51 spotted turtle captures and recaptures, with a single new turtle was identified by trail cam for a total of 13 documented animals. In 2017, capture rates were highest in late March and April (4.6 and 5.4/100 trap nights respectively) with no captures in October. In 2018, a total of 12 recaptures (no new animals) occurred during 1,033 trap nights with capture rates highest in May and June (1.6 and 2.9/100 trap nights respectively). Overall capture rates were 2 turtles/100 trap nights in 2017 and 1 turtle/100 trap nights. Although data from 2017 suggests the benefit of male decoys (27 captures over 1,106) over female decoys (18 captures over 1,099 nights), data from 2018 is contradictory regarding the influence of decoys on capture rates. Trap nights with female decoys (386) resulted in 8 turtle captures, while male decoys (399) and traps without any decoys (248) resulted in 1 and 3 captures respectively. Trapping efforts continue to determine the influence of decoys on spotted turtle captures rates in fen habitats.
AUTHORS. Andrew S. Hoffman, Annalee M. Tutterow, William E. Peterman – Ohio State University
ABSTRACT. Timber Rattlesnakes (Crotalus horridus) have declined dramatically throughout the northern periphery of their range, particularly in the Midwest. Here, remaining populations are concentrated on scattered Federal and State Forestry lands. Concerns regarding the potential for conflict between current forestry practices and resident timber rattlesnake populations prompted us to investigate rattlesnake home range size and habitat use using VHF telemetry on State Forestry lands in southeastern Ohio. From June 2016-October 2018, we located telemetered rattlesnakes 2-3 times per week. We assessed multi-scale habitat use at the individual and population level in relation to timber harvest and prescribed fire history. Our home range estimates were similar to those presented in previous studies from other states, but varied substantially within and among sex and age classes. We also observed substantial individual variation in habitat selection, though age class and sex strongly influenced selection among different management units. We found little evidence that snakes at our study site avoid previously burned or cut patches and observed some indication that snakes select for these disturbed habitats. Future studies will seek to link specific resource needs to different management approaches in order to determine why snakes are selecting for certain management units disproportionately.
AUTHORS: Kate C Donlon, William E Peterman – School of the Environment and Natural Resources, The Ohio State University
ABSTRACT: A leading contributor to the global decline of amphibians is habitat loss and alteration. While it is clear habitat alterationcan negatively impact the persistence of an organism on the landscape, many studies do not offer insight into population-level implications. Disturbed systems provide the opportunity to investigate the response of populations to habitat alteration post-disturbance. Industrial surface mining, also known as strip mining,is an example of extreme anthropogenic disturbance. The initial disturbance from surface mining can cause direct wildlife mortality and the displacement of species capable of moving away from the impacted area. Long-term effects are associated with changes to the vegetation and contour of the landscape. Prior to the Surface Mining Control and Reclamation Act of 1977 restoration requirements were minimal and infrequently enforced. Historically, strip mined land was often abandoned or only partially restored through the planting of trees on soil banks. Despite the extensive habitat destruction caused by the removal of layers of soil and rock to expose seams of coal for extraction, plethodontid salamanders have been found occupying reforested mine land that was abandoned prior to 1977 in Ohio. These populations provide an opportunity to study the long-term response of terrestrial salamanders to extreme anthropogenic disturbance. The goal of this project is to study the population genetics of terrestrial Northern Ravine salamander, Plethodon electropmorphus, across a heterogeneous landscape disturbed by strip mining. Comparisons between mined and un-mined sites will be made to infer the long-term impact strip mining has had on sensitive species’ ability to recoverfrom habitat disturbance. Population genetic parameters will be generated from microsatellite data from individuals sampled onmined and undisturbed reference sitesin Tuscarawas County, Ohio. Population genetic parameters will provide insight into population level implications ofextreme habitat disturbance.
AUTHORS: Jeanine M. Refsnider, Henry M. Streby – University of Toledo
ABSTRACT: Studies seeking to conserve habitat critical for the reproductive success of rare species often focus on nesting or spawning habitat. While such habitats are clearly important components of a species’ ecological requirements, conservation efforts focused solely on habitats used for nesting or spawning, without considering the consequences of oviposition-site choice, are, at best, incomplete. At worst, inadequate consideration for the fitness outcomes of oviposition-site choice may create ecological traps if animals are attracted to oviposition sites from which juveniles have very low probabilities of survival. Similarly, management activities such as prescribed burns or selective harvests designed to benefit one species may negatively impact a different species, even if the two species superficially appear to have the same habitat requirements. These problems illustrate the importance of understanding how multiple life stages of multiple species use a landscape, and how the fitness outcomes of differential habitat use impact population trends. We are studying three imperiled, flagship species of the Oak Openings Region in Ohio and Michigan: two terrestrial species commonly associated with oak savannah habitat, red-headed woodpeckers and eastern box turtles, and an aquatic species found in flooded prairies and fens, the spotted turtle. For all three species, we are radio-tracking adults to quantify habitat use and survival; locating and monitoring nests to quantify nest success in different habitat types; and radio-tracking juveniles from those nests to quantify effects of nest habitat on juvenile survival. From these data, we are creating landscape-scale productivity models to predict how management activity in one habitat patch will impact productivity of all three species in nearby habitat patches. Our overall goal is to provide land managers with spatially explicit productivity models for terrestrial and aquatic species of high conservation concern that are directly incorporable into adaptive management plans.
Wednesday January 30, 2019 11:20am - 11:40am EST
HOPE BALLROOM A