Welcome to the interactive web schedule for the 2019 Midwest Fish & Wildlife Conference! Please note, this event has passed. To return to the main Conference website, go to: www.midwestfw.org.

For tips on navigating this schedule, click HELPFUL INFO below.

CONFERENCE SCHEDULE UPDATES & CHANGES: As a result of the prolonged government shutdown, we experienced a number of cancellations and changes to the schedule. Cancellations and changes are listed here (as of January 26, 2019). 
Back To Schedule
Tuesday, January 29 • 6:00pm - 9:00pm
(P87) Influence of Spatial Alignment on Photographic Detection Rates at Remotely Triggered Camera Stations

Sign up or log in to save this to your schedule, view media, leave feedback and see who's attending!

AUTHORS. Edward Davis, Western Illinois University; Tim Swearingen, Western Illinois University; Robert Klaver, U.S. Geological Survey; Charles Anderson, Colorado Parks and Wildlife; Christopher DePerno, North Carolina State University; Jonathan Jenks, South Dakota State University; Robert Bluett, Illinois Department of Natural Resources; Christopher Jacques, Western Illinois University

ABSTRACT. Remotely triggered cameras can provide a cost-effective, non-invasive approach for investigating a variety of natural history and conservation concerns for various species. Trail camera performance is influenced by a wide range of factors, though no studies have rigorously evaluated potential sources of sampling bias (e.g., camera type, relative position) on overexposure (i.e., capturing the flash of one camera by another) events within paired camera station (i.e., 2 camera traps placed perpendicular to animal travel corridors) designs. We evaluated potential effects of camera type (Browning™ Recon Force, Moultrie™ M-880 Series, Reconyx™ HC 600 Hyperfire) and relative camera position (directly aligned vs. offset from one another [i.e., staggered]) on wildlife photographs recorded and overexposure events across 48 camera stations deployed during summer 2017. Total number of wildlife photographs varied by camera model and alignment (model × alignment interaction, F<sub>2,42</sub> = 5.56, P = 0.007); Reconyx and Browning cameras detected more wildlife photographs at aligned camera stations whereas Moultrie cameras detected more wildlife photographs at staggered camera stations. Further, the number of overexposure events varied (F<sub>1,46</sub> = 35.24, P = 0.001) between aligned (mean = 3.56, SE = 0.42, n = 25) and staggered (mean = 0.00, SE = 0.46, n = 23) camera stations. Mean percent overexposure for aligned stations was 5.63 (SE = 1.02, range = 23.91). We documented no overexposure events at staggered camera stations and no difference (F<sub>2,45</sub> = 0.05, P = 0.95) in numbers of exposure events across camera types.  We replicated our study during summer 2018 with 40 camera stations (Browning<sup>TM</sup>, Moultrie<sup>TM</sup>) and will report composite statistics and any yearly effect in our poster presentation.  We recommend that future use of paired camera stations for research, inventory, or monitoring of wildlife consider staggering the placement of cameras to minimize overexposure events of target species.

Tuesday January 29, 2019 6:00pm - 9:00pm EST
  Poster, Wildlife Techniques

Attendees (6)