Attending this event?
Welcome to the interactive web schedule for the 2019 Midwest Fish & Wildlife Conference! The schedule is subject to change (as of November 20, 2018). Please check back for updates. To return to the main Conference website, go to: www.midwestfw.org.

The conference schedule is hosted in SCHED which allows you to search within the schedule, and filter the schedule to show items only occurring on a certain date or within a track/symposia.
  • To view only a certain type of presentation or track, locate the heading "Filter By Type" in the navigation bar. As an example, try clicking on "T01: Fisheries: Great Lakes I".
  • The default view for the schedule is "Simple" which only shows the start time and title of the agenda item. Hover over the button that says "Schedule" to see the different view options. The "Expanded" option will show start and end times, room location, and session description, if there is one.
  • You can build your own schedule by creating a free account with SCHED by selecting "SIGN UP." Watch the "how-to" video to learn more about using Sched. 
  • PLEASE NOTE: Adding agenda items to your schedule through this app does not sign you up for a session. If an agenda item says "pre-registration required" or charges an additional fee, you need to add the item to your registration through the online registration system

View analytic
Tuesday, January 29 • 1:20pm - 1:40pm
(SYMPOSIA-11) Effects of Cyanobacteria on Quagga Mussel (Dreissena rostriformis bugensis) Reproduction

Sign up or log in to save this to your schedule and see who's attending!

AUTHORS: Kishore Gopalakrishnan, Donna Kashian, Anna Boegehold, Nick Johnson – Wayne State University

ABSTRACT: Dreissenid mussels are successful invaders in a wide variety of freshwater environments. As biofoulers, they create serious economic and recreational problems. In addition, these rapid filter feeders alter their invaded ecosystem by disrupting the entire food web. Their rapid colonization rate and environmental resilience make them difficult to control. Many management options have been explored for combating the spread of dreissenid mussels, but an effective management strategy is elusive.  In an effort to identify a novel management tool, we investigated the impacts of cyanobacteria, commonly associated with Harmful Algal Blooms (HABs), on reproduction in dreissenid mussels. Mussel populations may be regulated by HABs through several reproductive mechanisms including spawning and fertilization. Specifically we tested the impacts of several bloom forming cyanobacterial species on quagga mussel reproduction through a series of bioassays examining quagga mussels’ spawning, fertilization and sperm motility. Mussel were induced to spawn using serotonin, then the effect of five cyanobacterial species spawning and sperm motility was examined. Sperm motility was determined by recording the movement of sperm from five males per treatment at 400X, tracking velocity and distance travelled. Fertilization success was determined through assays combining quagga mussels’ egg and sperm in individual vials containing cyanobacteria species cultures (n=5), and enumerating zygote formation marked by cellular cleavage. Some cyanobacteria species inhibited reproductive endpoints; spawning was inhibited by Microcystis wesenbergii and M. ichthyoblabe, sperm motility was reduced by Aphanizomenon flos-aquae and two strains of M.aeruginosa and fertilization ratio decreased with exposure to five unique species of cyanobacteria including two strains of M. aeruginosa. These results show the HABs may negatively impact dreissenid populations. Determining the class of compounds and understanding the mechanism by which the cyanobacteria disrupts reproduction may inspire new dreissenid control tactics.

Tuesday January 29, 2019 1:20pm - 1:40pm