Welcome to the interactive web schedule for the 2019 Midwest Fish & Wildlife Conference! Please note, this event has passed. To return to the main Conference website, go to: www.midwestfw.org.

For tips on navigating this schedule, click HELPFUL INFO below.

CONFERENCE SCHEDULE UPDATES & CHANGES: As a result of the prolonged government shutdown, we experienced a number of cancellations and changes to the schedule. Cancellations and changes are listed here (as of January 26, 2019). 
Back To Schedule
Monday, January 28 • 2:00pm - 2:20pm
(FISHERIES: RIVERS & STREAMS) Comparison of Geomorphological Characteristics of the Wabash and Ohio Rivers and Their Impacts on Fish Assemblages

Sign up or log in to save this to your schedule, view media, leave feedback and see who's attending!

AUTHORS: Jeff Robbins, Dr. Mark Pyron – Ball State University

ABSTRACT: Streams are continuously changing systems, which makes them a challenging aquatic environment to quantify. River ecosystem models (River Continuum Concept, Flood Pulse Concept) define streams using longitudinal or lateral gradients, but neither is effective at defining stream geomorphology links to the biota. The Riverine Ecosystem Synthesis (RES) was developed to incorporate geomorphological structures of streams in coordination with their delineation. The RES divides rivers and streams into Functional Process Zones that are repeated throughout the river using physical characteristics and other variables. The RES defines FPZs using an ArcGIS model called RESonate. The model uses geology and elevation variables to determine floodplains, valley sizes, and river channels, which are then analyzed and processed into FPZs. This GIS model is relatively novel and therefore not many macro level watersheds have been processed through RESonate. The Wabash and Ohio Rivers have a combined stretch of over 2000 km of waterway through agricultural, urban, and forested land. At this time, no rivers in the Midwest United States have been analyzed using RESonate. The Wabash and Ohio Rivers contain high fish and wildlife biodiversity that have recreational and conservational value. The RESonate model will generate FPZs for the river that were previously unknown.Fish species inhabit environments best suited to their ecology that is dictated by substrate composition, large woody debris, and local hydraulics. I plan to use the RESonate model to identify FPZs at fish collection sites where we have longterm data. One goal is to test if fish species are using specific FPZs. This technique has not yet been tested for any fish assemblages. Determining FPZs of fish species in large Midwest Rivers can help with future management and conservation goals.

Monday January 28, 2019 2:00pm - 2:20pm EST