Loading…
Welcome to the interactive web schedule for the 2019 Midwest Fish & Wildlife Conference! Please note, this event has passed. To return to the main Conference website, go to: www.midwestfw.org.

For tips on navigating this schedule, click HELPFUL INFO below.

CONFERENCE SCHEDULE UPDATES & CHANGES: As a result of the prolonged government shutdown, we experienced a number of cancellations and changes to the schedule. Cancellations and changes are listed here (as of January 26, 2019). 

View analytic
Monday, January 28 • 10:20am - 10:40am
(FISHERIES: GREAT LAKES 1) Can Otolith Microchemistry Be Used to Delineate Natal Origin of Larval Lake Whitefish in the Lower Waters of Green Bay and Lake Michigan?

Sign up or log in to save this to your schedule and see who's attending!

AUTHORS: Lydia R. Doerr, Dr. Patrick Forsythe, Dr. Christopher Houghton – University of Wisconsin-Green Bay; Scott Hansen, Wisconsin Department of Natural Resources; Dr. Kevin Pangel, Central Michigan University

ABSTRACT: Much remains unknown regarding the early life history of Lake Whitefish in the Great Lakes despite their ecological and economic importance. The capture of larval Lake Whitefish in four major Green Bay tributaries (Fox, Menominee, Peshtigo, and Oconto Rivers) indicates the re-establishment of potamodromous stocks and suggests that these tributaries contribute to the overall metapopulation. The collection of larvae from the Sturgeon Bay shipping canal and the other reefs throughout Green Bay provides evidence that Lake Whitefish are also spawning in nearshore habitats. The ability to identify natal origin of a specific population is essential to creating effective stock-specific management plans; capable of protecting various sub-population that make up the larger Lake Whitefish metapopulation. Larvae collected during 2017-2018 were used to examine whether otolith microchemistry can accurately determine natal origin of these individuals. Preliminary analyses found significant differences in the ratio of strontium and barium to calcium in riverine and offshore water chemistry for Green Bay and Lake Michigan.  The incorporation of these and other trace elements in larval otoliths allowed for the identification of natal origins of Lake Whitefish sub-populations. Otolith microchemistry proved successful at delineating natal origins at both broader level (i.e. tributary vs. open water) and at the site-specific scale.

Monday January 28, 2019 10:20am - 10:40am
CENTER STREET ROOM A

Attendees (15)