Loading…
Welcome to the interactive web schedule for the 2019 Midwest Fish & Wildlife Conference! Please note, this event has passed. To return to the main Conference website, go to: www.midwestfw.org.

For tips on navigating this schedule, click HELPFUL INFO below.

CONFERENCE SCHEDULE UPDATES & CHANGES: As a result of the prolonged government shutdown, we experienced a number of cancellations and changes to the schedule. Cancellations and changes are listed here (as of January 26, 2019). 
Monday, January 28 • 4:00pm - 4:20pm
(SYMPOSIA-02) Inferring Landscape-scale Connectivity Between Local Populations of the Eastern Massasauga Using Genome-scale Markers

Sign up or log in to save this to your schedule, view media, leave feedback and see who's attending!

AUTHORS: Scott Martin, H. Lisle Gibbs – Department of Evolution, Ecology, and Organismal Biology, The Ohio State University and Ohio Biodiversity Conservation Partnership, The Ohio State University; Greg Lipps, Ohio Biodiversity Conservation Partnership, The Ohio State University

ABSTRACT: Effective management of rare species relies on knowing the spatial structuring and connectivity between populations. For example, the ability of individuals to move between populations increases the likelihood of long-term persistence of a species by promoting gene flow and buffering populations against stochastic demographic events, whereas a lack of movement leads to population isolation and an increase in genetic drift. Genetic markers, such as single nucleotide polymorphisms (SNPs), can be used to determine if individuals successfully disperse between populations with a high degree of resolution. We used genome scale genetic markers to study the population connectivity of the federally threatened Eastern Massasauga (Sistrurus catenatus) which exists across the US portion of its range in small isolated populations. Specifically, we generated ddRADseq data for 114 individuals from sixteen fields comprising six putative populations in NE Ohio. We then calculated pairwise genetic distances between all sites. These distances were used to optimize resistances maps based on elevation and landcover in R. The top resistance values were then added to the program ‘Circuitscape’ which uses circuit-theory based modelling to map areas critical to maintaining genetic connectivity between sites while allowing for multiple pathways between sites. Our results show how genetic data can be used to determine spatial structuring in a patchily distributed species, and to map critical corridors that maintain connectivity between sites.

Monday January 28, 2019 4:00pm - 4:20pm EST
HOPE BALLROOM B