Welcome to the interactive web schedule for the 2019 Midwest Fish & Wildlife Conference! Please note, this event has passed. To return to the main Conference website, go to: www.midwestfw.org.

For tips on navigating this schedule, click HELPFUL INFO below.

CONFERENCE SCHEDULE UPDATES & CHANGES: As a result of the prolonged government shutdown, we experienced a number of cancellations and changes to the schedule. Cancellations and changes are listed here (as of January 26, 2019). 
Back To Schedule
Monday, January 28 • 10:40am - 11:00am
(SYMPOSIA-02) Eastern Massasauga Demography and Extinction Risk Under Prescribed-Fire Scenarios

Sign up or log in to save this to your schedule, view media, leave feedback and see who's attending!

AUTHORS: Eric Hileman, U.S. Geological Service; Richard King, Northern Illinois University; Lisa Faust, Lincoln Park Zoo

ABSTRACT: Population viability analysis is a useful tool for comparing alternative management scenarios but requires accurate estimates of demographic parameters. A major threat to the Eastern Massasauga (Sistrurus catenatus) is habitat loss due to encroachment of woody vegetation and invasive species. Current land management practices include prescribed fire and mechanical control to maintain habitat suitability. Although these methods improve habitat quality, they may increase the risk of depredation due to reduced ground cover and can cause mortality if conducted when snakes are active. We estimated demographic parameters from an 8-year study of an Eastern Massasauga population near the range center of the species in southern Michigan. From 2009 to 2016, we captured 826 Eastern Massasaugas 1,776 times. Annual survival increased with increasing age (age 0=0.38, age 1=0.65, age 2=0.67, age >3 females=0.71, age >3 males=0.66), abundance ranged from 84 to 140 adults, annual reproductive frequency was 0.44, and litter size averaged 7.6 offspring. Using these parameter estimates, we created a baseline population viability model that incorporated current prescribed-fire practices. This model projected a stable population with only a 0.2–0.6% probability of extinction over 100 years, suggesting that current management practices at this site are sustainable. Simulations of modest increases in mortality due to fire changed the probability of extinction little over 50 years (<0.7%) but increased probability of extinction up to 24.5% over 100 years in the most pessimistic prescribed-burn scenario. These prescribed-burn simulations may be comparable to burn regimes used at other Eastern Massasauga sites. As information on geographic variation in Eastern Massasauga demography accumulates, population viability can be modeled more widely.

Monday January 28, 2019 10:40am - 11:00am EST